Expand description
§Rustls - a modern TLS library
Rustls is a TLS library that aims to provide a good level of cryptographic security, requires no configuration to achieve that security, and provides no unsafe features or obsolete cryptography by default.
§Current functionality (with default crate features)
- TLS1.2 and TLS1.3.
- ECDSA, Ed25519 or RSA server authentication by clients.
- ECDSA, Ed25519 or RSA server authentication by servers.
- Forward secrecy using ECDHE; with curve25519, nistp256 or nistp384 curves.
- AES128-GCM and AES256-GCM bulk encryption, with safe nonces.
- ChaCha20-Poly1305 bulk encryption (RFC7905).
- ALPN support.
- SNI support.
- Tunable fragment size to make TLS messages match size of underlying transport.
- Optional use of vectored IO to minimise system calls.
- TLS1.2 session resumption.
- TLS1.2 resumption via tickets (RFC5077).
- TLS1.3 resumption via tickets or session storage.
- TLS1.3 0-RTT data for clients.
- TLS1.3 0-RTT data for servers.
- Client authentication by clients.
- Client authentication by servers.
- Extended master secret support (RFC7627).
- Exporters (RFC5705).
- OCSP stapling by servers.
§Non-features
For reasons explained in the manual, rustls does not and will not support:
- SSL1, SSL2, SSL3, TLS1 or TLS1.1.
- RC4.
- DES or triple DES.
- EXPORT ciphersuites.
- MAC-then-encrypt ciphersuites.
- Ciphersuites without forward secrecy.
- Renegotiation.
- Kerberos.
- TLS 1.2 protocol compression.
- Discrete-log Diffie-Hellman.
- Automatic protocol version downgrade.
- Using CA certificates directly to authenticate a server/client (often called “self-signed certificates”). Rustls’ default certificate verifier does not support using a trust anchor as both a CA certificate and an end-entity certificate in order to limit complexity and risk in path building. While dangerous, all authentication can be turned off if required – see the example code.
There are plenty of other libraries that provide these features should you need them.
§Platform support
While Rustls itself is platform independent, by default it uses
ring
for implementing the cryptography in
TLS. As a result, rustls only runs on platforms
supported by ring
. At the time of writing, this means 32-bit ARM, Aarch64 (64-bit ARM),
x86, x86-64, LoongArch64, 32-bit & 64-bit Little Endian MIPS, 32-bit PowerPC (Big Endian),
64-bit PowerPC (Big and Little Endian), 64-bit RISC-V, and s390x. We do not presently
support WebAssembly.
For more information, see the supported ring
target platforms.
By providing a custom instance of the crypto::CryptoProvider
struct, you
can replace all cryptography dependencies of rustls. This is a route to being portable
to a wider set of architectures and environments, or compliance requirements. See the
crypto::CryptoProvider
documentation for more details.
Specifying default-features = false
when depending on rustls will remove the
dependency on ring.
Rustls requires Rust 1.61 or later.
§Design Overview
§Rustls does not take care of network IO
It doesn’t make or accept TCP connections, or do DNS, or read or write files.
There’s example client and server code which uses mio to do all needed network IO.
§Rustls provides encrypted pipes
These are the ServerConnection
and ClientConnection
types. You supply raw TLS traffic
on the left (via the read_tls()
and write_tls()
methods) and then read/write the
plaintext on the right:
TLS Plaintext
=== =========
read_tls() +-----------------------+ reader() as io::Read
| |
+---------> ClientConnection +--------->
| or |
<---------+ ServerConnection <---------+
| |
write_tls() +-----------------------+ writer() as io::Write
§Rustls takes care of server certificate verification
You do not need to provide anything other than a set of root certificates to trust. Certificate verification cannot be turned off or disabled in the main API.
§Getting started
This is the minimum you need to do to make a TLS client connection.
First we load some root certificates. These are used to authenticate the server.
The simplest way is to depend on the webpki_roots
crate which contains
the Mozilla set of root certificates.
let mut root_store = rustls::RootCertStore::empty();
root_store.extend(
webpki_roots::TLS_SERVER_ROOTS
.iter()
.cloned()
);
Next, we make a ClientConfig
. You’re likely to make one of these per process,
and use it for all connections made by that process.
let config = rustls::ClientConfig::builder()
.with_root_certificates(root_store)
.with_no_client_auth();
Now we can make a connection. You need to provide the server’s hostname so we know what to expect to find in the server’s certificate.
let rc_config = Arc::new(config);
let example_com = "example.com".try_into().unwrap();
let mut client = rustls::ClientConnection::new(rc_config, example_com);
Now you should do appropriate IO for the client
object. If client.wants_read()
yields
true, you should call client.read_tls()
when the underlying connection has data.
Likewise, if client.wants_write()
yields true, you should call client.write_tls()
when the underlying connection is able to send data. You should continue doing this
as long as the connection is valid.
The return types of read_tls()
and write_tls()
only tell you if the IO worked. No
parsing or processing of the TLS messages is done. After each read_tls()
you should
therefore call client.process_new_packets()
which parses and processes the messages.
Any error returned from process_new_packets
is fatal to the connection, and will tell you
why. For example, if the server’s certificate is expired process_new_packets
will
return Err(InvalidCertificate(Expired))
. From this point on,
process_new_packets
will not do any new work and will return that error continually.
You can extract newly received data by calling client.reader()
(which implements the
io::Read
trait). You can send data to the peer by calling client.writer()
(which
implements io::Write
trait). Note that client.writer().write()
buffers data you
send if the TLS connection is not yet established: this is useful for writing (say) a
HTTP request, but this is buffered so avoid large amounts of data.
The following code uses a fictional socket IO API for illustration, and does not handle errors.
use std::io;
use rustls::Connection;
client.writer().write(b"GET / HTTP/1.0\r\n\r\n").unwrap();
let mut socket = connect("example.com", 443);
loop {
if client.wants_read() && socket.ready_for_read() {
client.read_tls(&mut socket).unwrap();
client.process_new_packets().unwrap();
let mut plaintext = Vec::new();
client.reader().read_to_end(&mut plaintext).unwrap();
io::stdout().write(&plaintext).unwrap();
}
if client.wants_write() && socket.ready_for_write() {
client.write_tls(&mut socket).unwrap();
}
socket.wait_for_something_to_happen();
}
§Examples
tlsserver-mio
and tlsclient-mio
are full worked examples using mio
.
§Crate features
Here’s a list of what features are exposed by the rustls crate and what they mean.
-
ring
(enabled by default): makes the rustls crate depend on the ring crate, which is used for cryptography by default. Without this feature, these items must be provided externally to the core rustls crate: seeCryptoProvider
. -
aws_lc_rs
: makes the rustls crate depend on the aws-lc-rs crate, which can be used for cryptography as an alternative to ring. Userustls::crypto::aws_lc_rs::default_provider()
as aCryptoProvider
when making aClientConfig
orServerConfig
to use aws-lc-rsNote that aws-lc-rs has additional build-time dependencies like cmake. See the documentation for details.
-
tls12
(enabled by default): enable support for TLS version 1.2. Note that, due to the additive nature of Cargo features and because it is enabled by default, other crates in your dependency graph could re-enable it for your application. If you want to disable TLS 1.2 for security reasons, consider explicitly enabling TLS 1.3 only in the config builder API. -
logging
(enabled by default): make the rustls crate depend on thelog
crate. rustls outputs interesting protocol-level messages attrace!
anddebug!
level, and protocol-level errors atwarn!
anderror!
level. The log messages do not contain secret key data, and so are safe to archive without affecting session security. -
read_buf
: when building with Rust Nightly, adds support for the unstablestd::io::ReadBuf
and related APIs. This reduces costs from initializing buffers. Will do nothing on non-Nightly releases.
Re-exports§
pub use client::ClientConfig;
pub use client::ClientConnection;
pub use server::ServerConfig;
pub use server::ServerConnection;
Modules§
- Items for use in a client.
- Crypto provider interface.
- Internal classes that are used in integration tests. The contents of this section DO NOT form part of the stable interface.
- This is the rustls manual.
- Re-exports the contents of the rustls-pki-types crate for easy access
- APIs for implementing QUIC TLS
- Items for use in a server.
- Message signing interfaces.
- APIs for implementing TLS tickets
- All defined protocol versions appear in this module.
Structs§
- Connection state common to both client and server connections.
- Interface shared by client and server connections.
- This type combines a
SignatureScheme
and a signature payload produced with that scheme. - A
DistinguishedName
is aVec<u8>
wrapped in internal types. - Secrets for transmitting/receiving data over a TLS session.
- Values of this structure are returned from
Connection::process_new_packets
and tell the caller the current I/O state of the TLS connection. KeyLog
implementation that opens a file whose name is given by theSSLKEYLOGFILE
environment variable, and writes keys into it.- KeyLog that does exactly nothing.
- Any other error that cannot be expressed by a more specific
Error
variant. - A structure that implements
std::io::Read
for reading plaintext. - A container for root certificates able to provide a root-of-trust for connection authentication.
- This type implements
io::Read
andio::Write
, encapsulating a ConnectionC
and an underlying transportT
, such as a socket. - This type implements
io::Read
andio::Write
, encapsulating and owning a ConnectionC
and an underlying blocking transportT
, such as a socket. - A TLS protocol version supported by rustls.
- A TLS 1.2 cipher suite supported by rustls.
- A TLS 1.3 cipher suite supported by rustls.
- Config builder state where the caller must supply a verifier.
- Config builder state where the caller must supply TLS protocol versions.
- A structure that implements
std::io::Write
for writing plaintext.
Enums§
- The
AlertDescription
TLS protocol enum. Values in this enum are taken from the various RFCs covering TLS, and are listed by IANA. TheUnknown
item is used when processing unrecognised ordinals. - The ways in which a certificate revocation list (CRL) can be invalid.
- The ways in which certificate validators can express errors.
- The
CipherSuite
TLS protocol enum. Values in this enum are taken from the various RFCs covering TLS, and are listed by IANA. TheUnknown
item is used when processing unrecognised ordinals. - A client or server connection.
- Secrets used to encrypt/decrypt data in a TLS session.
- The
ContentType
TLS protocol enum. Values in this enum are taken from the various RFCs covering TLS, and are listed by IANA. TheUnknown
item is used when processing unrecognised ordinals. - rustls reports protocol errors using this type.
- The
HandshakeType
TLS protocol enum. Values in this enum are taken from the various RFCs covering TLS, and are listed by IANA. TheUnknown
item is used when processing unrecognised ordinals. - A corrupt TLS message payload that resulted in an error.
- The
NamedGroup
TLS protocol enum. Values in this enum are taken from the various RFCs covering TLS, and are listed by IANA. TheUnknown
item is used when processing unrecognised ordinals. - The set of cases where we failed to make a connection because a peer doesn’t support a TLS version/feature we require.
- The set of cases where we failed to make a connection because we thought the peer was misbehaving.
- The
ProtocolVersion
TLS protocol enum. Values in this enum are taken from the various RFCs covering TLS, and are listed by IANA. TheUnknown
item is used when processing unrecognised ordinals. - Side of the connection.
- The
SignatureAlgorithm
TLS protocol enum. Values in this enum are taken from the various RFCs covering TLS, and are listed by IANA. TheUnknown
item is used when processing unrecognised ordinals. - The
SignatureScheme
TLS protocol enum. Values in this enum are taken from the various RFCs covering TLS, and are listed by IANA. TheUnknown
item is used when processing unrecognised ordinals. - A cipher suite supported by rustls.
Statics§
- A list of all the protocol versions supported by rustls.
- The version configuration that an application should use by default.
Traits§
- This trait represents the ability to do something useful with key material, such as logging it to a file for debugging.
- Data specific to the peer’s side (client or server).