async_lock/rwlock/
raw.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
//! Raw, unsafe reader-writer locking implementation,
//! doesn't depend on the data protected by the lock.
//! [`RwLock`](super::RwLock) is implemented in terms of this.
//!
//! Splitting the implementation this way allows instantiating
//! the locking code only once, and also lets us make
//! [`RwLockReadGuard`](super::RwLockReadGuard) covariant in `T`.

use core::marker::PhantomPinned;
use core::mem::forget;
use core::pin::Pin;
use core::task::Poll;

use crate::sync::atomic::{AtomicUsize, Ordering};

use event_listener::{Event, EventListener};
use event_listener_strategy::{EventListenerFuture, Strategy};

use crate::futures::Lock;
use crate::Mutex;

const WRITER_BIT: usize = 1;
const ONE_READER: usize = 2;

/// A "raw" RwLock that doesn't hold any data.
pub(super) struct RawRwLock {
    /// Acquired by the writer.
    mutex: Mutex<()>,

    /// Event triggered when the last reader is dropped.
    no_readers: Event,

    /// Event triggered when the writer is dropped.
    no_writer: Event,

    /// Current state of the lock.
    ///
    /// The least significant bit (`WRITER_BIT`) is set to 1 when a writer is holding the lock or
    /// trying to acquire it.
    ///
    /// The upper bits contain the number of currently active readers. Each active reader
    /// increments the state by `ONE_READER`.
    state: AtomicUsize,
}

impl RawRwLock {
    const_fn! {
        const_if: #[cfg(not(loom))];
        #[inline]
        pub(super) const fn new() -> Self {
            RawRwLock {
                mutex: Mutex::new(()),
                no_readers: Event::new(),
                no_writer: Event::new(),
                state: AtomicUsize::new(0),
            }
        }
    }

    /// Returns `true` iff a read lock was successfully acquired.
    pub(super) fn try_read(&self) -> bool {
        let mut state = self.state.load(Ordering::Acquire);

        loop {
            // If there's a writer holding the lock or attempting to acquire it, we cannot acquire
            // a read lock here.
            if state & WRITER_BIT != 0 {
                return false;
            }

            // Make sure the number of readers doesn't overflow.
            if state > core::isize::MAX as usize {
                crate::abort();
            }

            // Increment the number of readers.
            match self.state.compare_exchange(
                state,
                state + ONE_READER,
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => return true,
                Err(s) => state = s,
            }
        }
    }

    #[inline]
    pub(super) fn read(&self) -> RawRead<'_> {
        RawRead {
            lock: self,
            state: self.state.load(Ordering::Acquire),
            listener: None,
            _pin: PhantomPinned,
        }
    }

    /// Returns `true` iff an upgradable read lock was successfully acquired.

    pub(super) fn try_upgradable_read(&self) -> bool {
        // First try grabbing the mutex.
        let lock = if let Some(lock) = self.mutex.try_lock() {
            lock
        } else {
            return false;
        };

        forget(lock);

        let mut state = self.state.load(Ordering::Acquire);

        // Make sure the number of readers doesn't overflow.
        if state > core::isize::MAX as usize {
            crate::abort();
        }

        // Increment the number of readers.
        loop {
            match self.state.compare_exchange(
                state,
                state + ONE_READER,
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => return true,
                Err(s) => state = s,
            }
        }
    }

    #[inline]

    pub(super) fn upgradable_read(&self) -> RawUpgradableRead<'_> {
        RawUpgradableRead {
            lock: self,
            acquire: self.mutex.lock(),
        }
    }

    /// Returs `true` iff a write lock was successfully acquired.

    pub(super) fn try_write(&self) -> bool {
        // First try grabbing the mutex.
        let lock = if let Some(lock) = self.mutex.try_lock() {
            lock
        } else {
            return false;
        };

        // If there are no readers, grab the write lock.
        if self
            .state
            .compare_exchange(0, WRITER_BIT, Ordering::AcqRel, Ordering::Acquire)
            .is_ok()
        {
            forget(lock);
            true
        } else {
            drop(lock);
            false
        }
    }

    #[inline]

    pub(super) fn write(&self) -> RawWrite<'_> {
        RawWrite {
            lock: self,
            no_readers: None,
            state: WriteState::Acquiring {
                lock: self.mutex.lock(),
            },
        }
    }

    /// Returns `true` iff a the upgradable read lock was successfully upgraded to a write lock.
    ///
    /// # Safety
    ///
    /// Caller must hold an upgradable read lock.
    /// This will attempt to upgrade it to a write lock.

    pub(super) unsafe fn try_upgrade(&self) -> bool {
        self.state
            .compare_exchange(ONE_READER, WRITER_BIT, Ordering::AcqRel, Ordering::Acquire)
            .is_ok()
    }

    /// # Safety
    ///
    /// Caller must hold an upgradable read lock.
    /// This will upgrade it to a write lock.

    pub(super) unsafe fn upgrade(&self) -> RawUpgrade<'_> {
        // Set `WRITER_BIT` and decrement the number of readers at the same time.
        self.state
            .fetch_sub(ONE_READER - WRITER_BIT, Ordering::SeqCst);

        RawUpgrade {
            lock: Some(self),
            listener: None,
            _pin: PhantomPinned,
        }
    }

    /// # Safety
    ///
    /// Caller must hold an upgradable read lock.
    /// This will downgrade it to a stadard read lock.
    #[inline]

    pub(super) unsafe fn downgrade_upgradable_read(&self) {
        self.mutex.unlock_unchecked();
    }

    /// # Safety
    ///
    /// Caller must hold a write lock.
    /// This will downgrade it to a read lock.

    pub(super) unsafe fn downgrade_write(&self) {
        // Atomically downgrade state.
        self.state
            .fetch_add(ONE_READER - WRITER_BIT, Ordering::SeqCst);

        // Release the writer mutex.
        self.mutex.unlock_unchecked();

        // Trigger the "no writer" event.
        self.no_writer.notify(1);
    }

    /// # Safety
    ///
    /// Caller must hold a write lock.
    /// This will downgrade it to an upgradable read lock.

    pub(super) unsafe fn downgrade_to_upgradable(&self) {
        // Atomically downgrade state.
        self.state
            .fetch_add(ONE_READER - WRITER_BIT, Ordering::SeqCst);
    }

    /// # Safety
    ///
    /// Caller must hold a read lock .
    /// This will unlock that lock.

    pub(super) unsafe fn read_unlock(&self) {
        // Decrement the number of readers.
        if self.state.fetch_sub(ONE_READER, Ordering::SeqCst) & !WRITER_BIT == ONE_READER {
            // If this was the last reader, trigger the "no readers" event.
            self.no_readers.notify(1);
        }
    }

    /// # Safety
    ///
    /// Caller must hold an upgradable read lock.
    /// This will unlock that lock.

    pub(super) unsafe fn upgradable_read_unlock(&self) {
        // Decrement the number of readers.
        if self.state.fetch_sub(ONE_READER, Ordering::SeqCst) & !WRITER_BIT == ONE_READER {
            // If this was the last reader, trigger the "no readers" event.
            self.no_readers.notify(1);
        }

        // SAFETY: upgradable read guards acquire the writer mutex upon creation.
        self.mutex.unlock_unchecked();
    }

    /// # Safety
    ///
    /// Caller must hold a write lock.
    /// This will unlock that lock.

    pub(super) unsafe fn write_unlock(&self) {
        // Unset `WRITER_BIT`.
        self.state.fetch_and(!WRITER_BIT, Ordering::SeqCst);
        // Trigger the "no writer" event.
        self.no_writer.notify(1);

        // Release the writer lock.
        // SAFETY: `RwLockWriteGuard` always holds a lock on writer mutex.
        self.mutex.unlock_unchecked();
    }
}

pin_project_lite::pin_project! {
    /// The future returned by [`RawRwLock::read`].

    pub(super) struct RawRead<'a> {
        // The lock that is being acquired.
        pub(super) lock: &'a RawRwLock,

        // The last-observed state of the lock.
        state: usize,

        // The listener for the "no writers" event.
        listener: Option<EventListener>,

        // Making this type `!Unpin` enables future optimizations.
        #[pin]
        _pin: PhantomPinned
    }
}

impl<'a> EventListenerFuture for RawRead<'a> {
    type Output = ();

    fn poll_with_strategy<'x, S: Strategy<'x>>(
        self: Pin<&mut Self>,
        strategy: &mut S,
        cx: &mut S::Context,
    ) -> Poll<()> {
        let this = self.project();

        loop {
            if *this.state & WRITER_BIT == 0 {
                // Make sure the number of readers doesn't overflow.
                if *this.state > core::isize::MAX as usize {
                    crate::abort();
                }

                // If nobody is holding a write lock or attempting to acquire it, increment the
                // number of readers.
                match this.lock.state.compare_exchange(
                    *this.state,
                    *this.state + ONE_READER,
                    Ordering::AcqRel,
                    Ordering::Acquire,
                ) {
                    Ok(_) => return Poll::Ready(()),
                    Err(s) => *this.state = s,
                }
            } else {
                // Start listening for "no writer" events.
                let load_ordering = if this.listener.is_none() {
                    *this.listener = Some(this.lock.no_writer.listen());

                    // Make sure there really is no writer.
                    Ordering::SeqCst
                } else {
                    // Wait for the writer to finish.
                    ready!(strategy.poll(this.listener, cx));

                    // Notify the next reader waiting in list.
                    this.lock.no_writer.notify(1);

                    // Check the state again.
                    Ordering::Acquire
                };

                // Reload the state.
                *this.state = this.lock.state.load(load_ordering);
            }
        }
    }
}

pin_project_lite::pin_project! {
    /// The future returned by [`RawRwLock::upgradable_read`].
    pub(super) struct RawUpgradableRead<'a> {
        // The lock that is being acquired.
        pub(super) lock: &'a RawRwLock,

        // The mutex we are trying to acquire.
        #[pin]
        acquire: Lock<'a, ()>,
    }
}

impl<'a> EventListenerFuture for RawUpgradableRead<'a> {
    type Output = ();

    fn poll_with_strategy<'x, S: Strategy<'x>>(
        self: Pin<&mut Self>,
        strategy: &mut S,
        cx: &mut S::Context,
    ) -> Poll<()> {
        let this = self.project();

        // Acquire the mutex.
        let mutex_guard = ready!(this.acquire.poll_with_strategy(strategy, cx));
        forget(mutex_guard);

        // Load the current state.
        let mut state = this.lock.state.load(Ordering::Acquire);

        // Make sure the number of readers doesn't overflow.
        if state > core::isize::MAX as usize {
            crate::abort();
        }

        // Increment the number of readers.
        loop {
            match this.lock.state.compare_exchange(
                state,
                state + ONE_READER,
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => {
                    return Poll::Ready(());
                }
                Err(s) => state = s,
            }
        }
    }
}

pin_project_lite::pin_project! {
    /// The future returned by [`RawRwLock::write`].

    pub(super) struct RawWrite<'a> {
        // The lock that is being acquired.
        pub(super) lock: &'a RawRwLock,

        // Our listener for the "no readers" event.
        no_readers: Option<EventListener>,

        // Current state fof this future.
        #[pin]
        state: WriteState<'a>,
    }

    impl PinnedDrop for RawWrite<'_> {
        fn drop(this: Pin<&mut Self>) {
            let this = this.project();

            if matches!(this.state.project(), WriteStateProj::WaitingReaders) {
                // Safety: we hold a write lock, more or less.
                unsafe {
                    this.lock.write_unlock();
                }
            }
        }
    }
}

pin_project_lite::pin_project! {
    #[project = WriteStateProj]
    #[project_replace = WriteStateProjReplace]
    enum WriteState<'a> {
        // We are currently acquiring the inner mutex.
        Acquiring { #[pin] lock: Lock<'a, ()> },

        // We are currently waiting for readers to finish.
        WaitingReaders,

        // The future has completed.
        Acquired,
    }
}

impl<'a> EventListenerFuture for RawWrite<'a> {
    type Output = ();

    fn poll_with_strategy<'x, S: Strategy<'x>>(
        self: Pin<&mut Self>,
        strategy: &mut S,
        cx: &mut S::Context,
    ) -> Poll<()> {
        let mut this = self.project();

        loop {
            match this.state.as_mut().project() {
                WriteStateProj::Acquiring { lock } => {
                    // First grab the mutex.
                    let mutex_guard = ready!(lock.poll_with_strategy(strategy, cx));
                    forget(mutex_guard);

                    // Set `WRITER_BIT` and create a guard that unsets it in case this future is canceled.
                    let new_state = this.lock.state.fetch_or(WRITER_BIT, Ordering::SeqCst);

                    // If we just acquired the lock, return.
                    if new_state == WRITER_BIT {
                        this.state.as_mut().set(WriteState::Acquired);
                        return Poll::Ready(());
                    }

                    // Start waiting for the readers to finish.
                    *this.no_readers = Some(this.lock.no_readers.listen());
                    this.state.as_mut().set(WriteState::WaitingReaders);
                }

                WriteStateProj::WaitingReaders => {
                    let load_ordering = if this.no_readers.is_some() {
                        Ordering::Acquire
                    } else {
                        Ordering::SeqCst
                    };

                    // Check the state again.
                    if this.lock.state.load(load_ordering) == WRITER_BIT {
                        // We are the only ones holding the lock, return `Ready`.
                        this.state.as_mut().set(WriteState::Acquired);
                        return Poll::Ready(());
                    }

                    // Wait for the readers to finish.
                    if this.no_readers.is_none() {
                        // Register a listener.
                        *this.no_readers = Some(this.lock.no_readers.listen());
                    } else {
                        // Wait for the readers to finish.
                        ready!(strategy.poll(this.no_readers, cx));
                    };
                }
                WriteStateProj::Acquired => panic!("Write lock already acquired"),
            }
        }
    }
}

pin_project_lite::pin_project! {
    /// The future returned by [`RawRwLock::upgrade`].

    pub(super) struct RawUpgrade<'a> {
        lock: Option<&'a RawRwLock>,

        // The event listener we are waiting on.
        listener: Option<EventListener>,

        // Keeping this future `!Unpin` enables future optimizations.
        #[pin]
        _pin: PhantomPinned
    }

    impl PinnedDrop for RawUpgrade<'_> {
        fn drop(this: Pin<&mut Self>) {
            let this = this.project();
            if let Some(lock) = this.lock {
                // SAFETY: we are dropping the future that would give us a write lock,
                // so we don't need said lock anymore.
                unsafe {
                    lock.write_unlock();
                }
            }
        }
    }
}

impl<'a> EventListenerFuture for RawUpgrade<'a> {
    type Output = &'a RawRwLock;

    fn poll_with_strategy<'x, S: Strategy<'x>>(
        self: Pin<&mut Self>,
        strategy: &mut S,
        cx: &mut S::Context,
    ) -> Poll<&'a RawRwLock> {
        let this = self.project();
        let lock = this.lock.expect("cannot poll future after completion");

        // If there are readers, we need to wait for them to finish.
        loop {
            let load_ordering = if this.listener.is_some() {
                Ordering::Acquire
            } else {
                Ordering::SeqCst
            };

            // See if the number of readers is zero.
            let state = lock.state.load(load_ordering);
            if state == WRITER_BIT {
                break;
            }

            // If there are readers, wait for them to finish.
            if this.listener.is_none() {
                // Start listening for "no readers" events.
                *this.listener = Some(lock.no_readers.listen());
            } else {
                // Wait for the readers to finish.
                ready!(strategy.poll(this.listener, cx));
            };
        }

        // We are done.
        Poll::Ready(this.lock.take().unwrap())
    }
}

impl<'a> RawUpgrade<'a> {
    /// Whether the future returned `Poll::Ready(..)` at some point.
    #[inline]
    pub(super) fn is_ready(&self) -> bool {
        self.lock.is_none()
    }
}