1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
use crate::{
    encode::add_padding,
    engine::{Config, Engine},
};
#[cfg(any(feature = "alloc", feature = "std", test))]
use alloc::string::String;
#[cfg(any(feature = "alloc", feature = "std", test))]
use core::str;

/// The output mechanism for ChunkedEncoder's encoded bytes.
pub trait Sink {
    type Error;

    /// Handle a chunk of encoded base64 data (as UTF-8 bytes)
    fn write_encoded_bytes(&mut self, encoded: &[u8]) -> Result<(), Self::Error>;
}

/// A base64 encoder that emits encoded bytes in chunks without heap allocation.
pub struct ChunkedEncoder<'e, E: Engine + ?Sized> {
    engine: &'e E,
}

impl<'e, E: Engine + ?Sized> ChunkedEncoder<'e, E> {
    pub fn new(engine: &'e E) -> ChunkedEncoder<'e, E> {
        ChunkedEncoder { engine }
    }

    pub fn encode<S: Sink>(&self, bytes: &[u8], sink: &mut S) -> Result<(), S::Error> {
        const BUF_SIZE: usize = 1024;
        const CHUNK_SIZE: usize = BUF_SIZE / 4 * 3;

        let mut buf = [0; BUF_SIZE];
        for chunk in bytes.chunks(CHUNK_SIZE) {
            let mut len = self.engine.internal_encode(chunk, &mut buf);
            if chunk.len() != CHUNK_SIZE && self.engine.config().encode_padding() {
                // Final, potentially partial, chunk.
                // Only need to consider if padding is needed on a partial chunk since full chunk
                // is a multiple of 3, which therefore won't be padded.
                // Pad output to multiple of four bytes if required by config.
                len += add_padding(len, &mut buf[len..]);
            }
            sink.write_encoded_bytes(&buf[..len])?;
        }

        Ok(())
    }
}

// A really simple sink that just appends to a string
#[cfg(any(feature = "alloc", feature = "std", test))]
pub(crate) struct StringSink<'a> {
    string: &'a mut String,
}

#[cfg(any(feature = "alloc", feature = "std", test))]
impl<'a> StringSink<'a> {
    pub(crate) fn new(s: &mut String) -> StringSink {
        StringSink { string: s }
    }
}

#[cfg(any(feature = "alloc", feature = "std", test))]
impl<'a> Sink for StringSink<'a> {
    type Error = ();

    fn write_encoded_bytes(&mut self, s: &[u8]) -> Result<(), Self::Error> {
        self.string.push_str(str::from_utf8(s).unwrap());

        Ok(())
    }
}

#[cfg(test)]
pub mod tests {
    use rand::{
        distributions::{Distribution, Uniform},
        Rng, SeedableRng,
    };

    use crate::{
        alphabet::STANDARD,
        engine::general_purpose::{GeneralPurpose, GeneralPurposeConfig, PAD},
        tests::random_engine,
    };

    use super::*;

    #[test]
    fn chunked_encode_empty() {
        assert_eq!("", chunked_encode_str(&[], PAD));
    }

    #[test]
    fn chunked_encode_intermediate_fast_loop() {
        // > 8 bytes input, will enter the pretty fast loop
        assert_eq!("Zm9vYmFyYmF6cXV4", chunked_encode_str(b"foobarbazqux", PAD));
    }

    #[test]
    fn chunked_encode_fast_loop() {
        // > 32 bytes input, will enter the uber fast loop
        assert_eq!(
            "Zm9vYmFyYmF6cXV4cXV1eGNvcmdlZ3JhdWx0Z2FycGx5eg==",
            chunked_encode_str(b"foobarbazquxquuxcorgegraultgarplyz", PAD)
        );
    }

    #[test]
    fn chunked_encode_slow_loop_only() {
        // < 8 bytes input, slow loop only
        assert_eq!("Zm9vYmFy", chunked_encode_str(b"foobar", PAD));
    }

    #[test]
    fn chunked_encode_matches_normal_encode_random_string_sink() {
        let helper = StringSinkTestHelper;
        chunked_encode_matches_normal_encode_random(&helper);
    }

    pub fn chunked_encode_matches_normal_encode_random<S: SinkTestHelper>(sink_test_helper: &S) {
        let mut input_buf: Vec<u8> = Vec::new();
        let mut output_buf = String::new();
        let mut rng = rand::rngs::SmallRng::from_entropy();
        let input_len_range = Uniform::new(1, 10_000);

        for _ in 0..20_000 {
            input_buf.clear();
            output_buf.clear();

            let buf_len = input_len_range.sample(&mut rng);
            for _ in 0..buf_len {
                input_buf.push(rng.gen());
            }

            let engine = random_engine(&mut rng);

            let chunk_encoded_string = sink_test_helper.encode_to_string(&engine, &input_buf);
            engine.encode_string(&input_buf, &mut output_buf);

            assert_eq!(output_buf, chunk_encoded_string, "input len={}", buf_len);
        }
    }

    fn chunked_encode_str(bytes: &[u8], config: GeneralPurposeConfig) -> String {
        let mut s = String::new();

        let mut sink = StringSink::new(&mut s);
        let engine = GeneralPurpose::new(&STANDARD, config);
        let encoder = ChunkedEncoder::new(&engine);
        encoder.encode(bytes, &mut sink).unwrap();

        s
    }

    // An abstraction around sinks so that we can have tests that easily to any sink implementation
    pub trait SinkTestHelper {
        fn encode_to_string<E: Engine>(&self, engine: &E, bytes: &[u8]) -> String;
    }

    struct StringSinkTestHelper;

    impl SinkTestHelper for StringSinkTestHelper {
        fn encode_to_string<E: Engine>(&self, engine: &E, bytes: &[u8]) -> String {
            let encoder = ChunkedEncoder::new(engine);
            let mut s = String::new();
            let mut sink = StringSink::new(&mut s);
            encoder.encode(bytes, &mut sink).unwrap();

            s
        }
    }
}