bytes/bytes.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
use core::iter::FromIterator;
use core::ops::{Deref, RangeBounds};
use core::{cmp, fmt, hash, mem, ptr, slice, usize};
use alloc::{
alloc::{dealloc, Layout},
borrow::Borrow,
boxed::Box,
string::String,
vec::Vec,
};
use crate::buf::IntoIter;
#[allow(unused)]
use crate::loom::sync::atomic::AtomicMut;
use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
use crate::Buf;
/// A cheaply cloneable and sliceable chunk of contiguous memory.
///
/// `Bytes` is an efficient container for storing and operating on contiguous
/// slices of memory. It is intended for use primarily in networking code, but
/// could have applications elsewhere as well.
///
/// `Bytes` values facilitate zero-copy network programming by allowing multiple
/// `Bytes` objects to point to the same underlying memory.
///
/// `Bytes` does not have a single implementation. It is an interface, whose
/// exact behavior is implemented through dynamic dispatch in several underlying
/// implementations of `Bytes`.
///
/// All `Bytes` implementations must fulfill the following requirements:
/// - They are cheaply cloneable and thereby shareable between an unlimited amount
/// of components, for example by modifying a reference count.
/// - Instances can be sliced to refer to a subset of the original buffer.
///
/// ```
/// use bytes::Bytes;
///
/// let mut mem = Bytes::from("Hello world");
/// let a = mem.slice(0..5);
///
/// assert_eq!(a, "Hello");
///
/// let b = mem.split_to(6);
///
/// assert_eq!(mem, "world");
/// assert_eq!(b, "Hello ");
/// ```
///
/// # Memory layout
///
/// The `Bytes` struct itself is fairly small, limited to 4 `usize` fields used
/// to track information about which segment of the underlying memory the
/// `Bytes` handle has access to.
///
/// `Bytes` keeps both a pointer to the shared state containing the full memory
/// slice and a pointer to the start of the region visible by the handle.
/// `Bytes` also tracks the length of its view into the memory.
///
/// # Sharing
///
/// `Bytes` contains a vtable, which allows implementations of `Bytes` to define
/// how sharing/cloning is implemented in detail.
/// When `Bytes::clone()` is called, `Bytes` will call the vtable function for
/// cloning the backing storage in order to share it behind between multiple
/// `Bytes` instances.
///
/// For `Bytes` implementations which refer to constant memory (e.g. created
/// via `Bytes::from_static()`) the cloning implementation will be a no-op.
///
/// For `Bytes` implementations which point to a reference counted shared storage
/// (e.g. an `Arc<[u8]>`), sharing will be implemented by increasing the
/// reference count.
///
/// Due to this mechanism, multiple `Bytes` instances may point to the same
/// shared memory region.
/// Each `Bytes` instance can point to different sections within that
/// memory region, and `Bytes` instances may or may not have overlapping views
/// into the memory.
///
/// The following diagram visualizes a scenario where 2 `Bytes` instances make
/// use of an `Arc`-based backing storage, and provide access to different views:
///
/// ```text
///
/// Arc ptrs ┌─────────┐
/// ________________________ / │ Bytes 2 │
/// / └─────────┘
/// / ┌───────────┐ | |
/// |_________/ │ Bytes 1 │ | |
/// | └───────────┘ | |
/// | | | ___/ data | tail
/// | data | tail |/ |
/// v v v v
/// ┌─────┬─────┬───────────┬───────────────┬─────┐
/// │ Arc │ │ │ │ │
/// └─────┴─────┴───────────┴───────────────┴─────┘
/// ```
pub struct Bytes {
ptr: *const u8,
len: usize,
// inlined "trait object"
data: AtomicPtr<()>,
vtable: &'static Vtable,
}
pub(crate) struct Vtable {
/// fn(data, ptr, len)
pub clone: unsafe fn(&AtomicPtr<()>, *const u8, usize) -> Bytes,
/// fn(data, ptr, len)
///
/// takes `Bytes` to value
pub to_vec: unsafe fn(&AtomicPtr<()>, *const u8, usize) -> Vec<u8>,
/// fn(data, ptr, len)
pub drop: unsafe fn(&mut AtomicPtr<()>, *const u8, usize),
}
impl Bytes {
/// Creates a new empty `Bytes`.
///
/// This will not allocate and the returned `Bytes` handle will be empty.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::new();
/// assert_eq!(&b[..], b"");
/// ```
#[inline]
#[cfg(not(all(loom, test)))]
pub const fn new() -> Self {
// Make it a named const to work around
// "unsizing casts are not allowed in const fn"
const EMPTY: &[u8] = &[];
Bytes::from_static(EMPTY)
}
#[cfg(all(loom, test))]
pub fn new() -> Self {
const EMPTY: &[u8] = &[];
Bytes::from_static(EMPTY)
}
/// Creates a new `Bytes` from a static slice.
///
/// The returned `Bytes` will point directly to the static slice. There is
/// no allocating or copying.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::from_static(b"hello");
/// assert_eq!(&b[..], b"hello");
/// ```
#[inline]
#[cfg(not(all(loom, test)))]
pub const fn from_static(bytes: &'static [u8]) -> Self {
Bytes {
ptr: bytes.as_ptr(),
len: bytes.len(),
data: AtomicPtr::new(ptr::null_mut()),
vtable: &STATIC_VTABLE,
}
}
#[cfg(all(loom, test))]
pub fn from_static(bytes: &'static [u8]) -> Self {
Bytes {
ptr: bytes.as_ptr(),
len: bytes.len(),
data: AtomicPtr::new(ptr::null_mut()),
vtable: &STATIC_VTABLE,
}
}
/// Returns the number of bytes contained in this `Bytes`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::from(&b"hello"[..]);
/// assert_eq!(b.len(), 5);
/// ```
#[inline]
pub const fn len(&self) -> usize {
self.len
}
/// Returns true if the `Bytes` has a length of 0.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::new();
/// assert!(b.is_empty());
/// ```
#[inline]
pub const fn is_empty(&self) -> bool {
self.len == 0
}
/// Creates `Bytes` instance from slice, by copying it.
pub fn copy_from_slice(data: &[u8]) -> Self {
data.to_vec().into()
}
/// Returns a slice of self for the provided range.
///
/// This will increment the reference count for the underlying memory and
/// return a new `Bytes` handle set to the slice.
///
/// This operation is `O(1)`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let a = Bytes::from(&b"hello world"[..]);
/// let b = a.slice(2..5);
///
/// assert_eq!(&b[..], b"llo");
/// ```
///
/// # Panics
///
/// Requires that `begin <= end` and `end <= self.len()`, otherwise slicing
/// will panic.
pub fn slice(&self, range: impl RangeBounds<usize>) -> Self {
use core::ops::Bound;
let len = self.len();
let begin = match range.start_bound() {
Bound::Included(&n) => n,
Bound::Excluded(&n) => n + 1,
Bound::Unbounded => 0,
};
let end = match range.end_bound() {
Bound::Included(&n) => n.checked_add(1).expect("out of range"),
Bound::Excluded(&n) => n,
Bound::Unbounded => len,
};
assert!(
begin <= end,
"range start must not be greater than end: {:?} <= {:?}",
begin,
end,
);
assert!(
end <= len,
"range end out of bounds: {:?} <= {:?}",
end,
len,
);
if end == begin {
return Bytes::new();
}
let mut ret = self.clone();
ret.len = end - begin;
ret.ptr = unsafe { ret.ptr.add(begin) };
ret
}
/// Returns a slice of self that is equivalent to the given `subset`.
///
/// When processing a `Bytes` buffer with other tools, one often gets a
/// `&[u8]` which is in fact a slice of the `Bytes`, i.e. a subset of it.
/// This function turns that `&[u8]` into another `Bytes`, as if one had
/// called `self.slice()` with the offsets that correspond to `subset`.
///
/// This operation is `O(1)`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let bytes = Bytes::from(&b"012345678"[..]);
/// let as_slice = bytes.as_ref();
/// let subset = &as_slice[2..6];
/// let subslice = bytes.slice_ref(&subset);
/// assert_eq!(&subslice[..], b"2345");
/// ```
///
/// # Panics
///
/// Requires that the given `sub` slice is in fact contained within the
/// `Bytes` buffer; otherwise this function will panic.
pub fn slice_ref(&self, subset: &[u8]) -> Self {
// Empty slice and empty Bytes may have their pointers reset
// so explicitly allow empty slice to be a subslice of any slice.
if subset.is_empty() {
return Bytes::new();
}
let bytes_p = self.as_ptr() as usize;
let bytes_len = self.len();
let sub_p = subset.as_ptr() as usize;
let sub_len = subset.len();
assert!(
sub_p >= bytes_p,
"subset pointer ({:p}) is smaller than self pointer ({:p})",
subset.as_ptr(),
self.as_ptr(),
);
assert!(
sub_p + sub_len <= bytes_p + bytes_len,
"subset is out of bounds: self = ({:p}, {}), subset = ({:p}, {})",
self.as_ptr(),
bytes_len,
subset.as_ptr(),
sub_len,
);
let sub_offset = sub_p - bytes_p;
self.slice(sub_offset..(sub_offset + sub_len))
}
/// Splits the bytes into two at the given index.
///
/// Afterwards `self` contains elements `[0, at)`, and the returned `Bytes`
/// contains elements `[at, len)`.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut a = Bytes::from(&b"hello world"[..]);
/// let b = a.split_off(5);
///
/// assert_eq!(&a[..], b"hello");
/// assert_eq!(&b[..], b" world");
/// ```
///
/// # Panics
///
/// Panics if `at > len`.
#[must_use = "consider Bytes::truncate if you don't need the other half"]
pub fn split_off(&mut self, at: usize) -> Self {
assert!(
at <= self.len(),
"split_off out of bounds: {:?} <= {:?}",
at,
self.len(),
);
if at == self.len() {
return Bytes::new();
}
if at == 0 {
return mem::replace(self, Bytes::new());
}
let mut ret = self.clone();
self.len = at;
unsafe { ret.inc_start(at) };
ret
}
/// Splits the bytes into two at the given index.
///
/// Afterwards `self` contains elements `[at, len)`, and the returned
/// `Bytes` contains elements `[0, at)`.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut a = Bytes::from(&b"hello world"[..]);
/// let b = a.split_to(5);
///
/// assert_eq!(&a[..], b" world");
/// assert_eq!(&b[..], b"hello");
/// ```
///
/// # Panics
///
/// Panics if `at > len`.
#[must_use = "consider Bytes::advance if you don't need the other half"]
pub fn split_to(&mut self, at: usize) -> Self {
assert!(
at <= self.len(),
"split_to out of bounds: {:?} <= {:?}",
at,
self.len(),
);
if at == self.len() {
return mem::replace(self, Bytes::new());
}
if at == 0 {
return Bytes::new();
}
let mut ret = self.clone();
unsafe { self.inc_start(at) };
ret.len = at;
ret
}
/// Shortens the buffer, keeping the first `len` bytes and dropping the
/// rest.
///
/// If `len` is greater than the buffer's current length, this has no
/// effect.
///
/// The [`split_off`] method can emulate `truncate`, but this causes the
/// excess bytes to be returned instead of dropped.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut buf = Bytes::from(&b"hello world"[..]);
/// buf.truncate(5);
/// assert_eq!(buf, b"hello"[..]);
/// ```
///
/// [`split_off`]: #method.split_off
#[inline]
pub fn truncate(&mut self, len: usize) {
if len < self.len {
// The Vec "promotable" vtables do not store the capacity,
// so we cannot truncate while using this repr. We *have* to
// promote using `split_off` so the capacity can be stored.
if self.vtable as *const Vtable == &PROMOTABLE_EVEN_VTABLE
|| self.vtable as *const Vtable == &PROMOTABLE_ODD_VTABLE
{
drop(self.split_off(len));
} else {
self.len = len;
}
}
}
/// Clears the buffer, removing all data.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut buf = Bytes::from(&b"hello world"[..]);
/// buf.clear();
/// assert!(buf.is_empty());
/// ```
#[inline]
pub fn clear(&mut self) {
self.truncate(0);
}
#[inline]
pub(crate) unsafe fn with_vtable(
ptr: *const u8,
len: usize,
data: AtomicPtr<()>,
vtable: &'static Vtable,
) -> Bytes {
Bytes {
ptr,
len,
data,
vtable,
}
}
// private
#[inline]
fn as_slice(&self) -> &[u8] {
unsafe { slice::from_raw_parts(self.ptr, self.len) }
}
#[inline]
unsafe fn inc_start(&mut self, by: usize) {
// should already be asserted, but debug assert for tests
debug_assert!(self.len >= by, "internal: inc_start out of bounds");
self.len -= by;
self.ptr = self.ptr.add(by);
}
}
// Vtable must enforce this behavior
unsafe impl Send for Bytes {}
unsafe impl Sync for Bytes {}
impl Drop for Bytes {
#[inline]
fn drop(&mut self) {
unsafe { (self.vtable.drop)(&mut self.data, self.ptr, self.len) }
}
}
impl Clone for Bytes {
#[inline]
fn clone(&self) -> Bytes {
unsafe { (self.vtable.clone)(&self.data, self.ptr, self.len) }
}
}
impl Buf for Bytes {
#[inline]
fn remaining(&self) -> usize {
self.len()
}
#[inline]
fn chunk(&self) -> &[u8] {
self.as_slice()
}
#[inline]
fn advance(&mut self, cnt: usize) {
assert!(
cnt <= self.len(),
"cannot advance past `remaining`: {:?} <= {:?}",
cnt,
self.len(),
);
unsafe {
self.inc_start(cnt);
}
}
fn copy_to_bytes(&mut self, len: usize) -> crate::Bytes {
if len == self.remaining() {
core::mem::replace(self, Bytes::new())
} else {
let ret = self.slice(..len);
self.advance(len);
ret
}
}
}
impl Deref for Bytes {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
self.as_slice()
}
}
impl AsRef<[u8]> for Bytes {
#[inline]
fn as_ref(&self) -> &[u8] {
self.as_slice()
}
}
impl hash::Hash for Bytes {
fn hash<H>(&self, state: &mut H)
where
H: hash::Hasher,
{
self.as_slice().hash(state);
}
}
impl Borrow<[u8]> for Bytes {
fn borrow(&self) -> &[u8] {
self.as_slice()
}
}
impl IntoIterator for Bytes {
type Item = u8;
type IntoIter = IntoIter<Bytes>;
fn into_iter(self) -> Self::IntoIter {
IntoIter::new(self)
}
}
impl<'a> IntoIterator for &'a Bytes {
type Item = &'a u8;
type IntoIter = core::slice::Iter<'a, u8>;
fn into_iter(self) -> Self::IntoIter {
self.as_slice().iter()
}
}
impl FromIterator<u8> for Bytes {
fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
Vec::from_iter(into_iter).into()
}
}
// impl Eq
impl PartialEq for Bytes {
fn eq(&self, other: &Bytes) -> bool {
self.as_slice() == other.as_slice()
}
}
impl PartialOrd for Bytes {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
self.as_slice().partial_cmp(other.as_slice())
}
}
impl Ord for Bytes {
fn cmp(&self, other: &Bytes) -> cmp::Ordering {
self.as_slice().cmp(other.as_slice())
}
}
impl Eq for Bytes {}
impl PartialEq<[u8]> for Bytes {
fn eq(&self, other: &[u8]) -> bool {
self.as_slice() == other
}
}
impl PartialOrd<[u8]> for Bytes {
fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
self.as_slice().partial_cmp(other)
}
}
impl PartialEq<Bytes> for [u8] {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for [u8] {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
}
}
impl PartialEq<str> for Bytes {
fn eq(&self, other: &str) -> bool {
self.as_slice() == other.as_bytes()
}
}
impl PartialOrd<str> for Bytes {
fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
self.as_slice().partial_cmp(other.as_bytes())
}
}
impl PartialEq<Bytes> for str {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for str {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
}
}
impl PartialEq<Vec<u8>> for Bytes {
fn eq(&self, other: &Vec<u8>) -> bool {
*self == other[..]
}
}
impl PartialOrd<Vec<u8>> for Bytes {
fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
self.as_slice().partial_cmp(&other[..])
}
}
impl PartialEq<Bytes> for Vec<u8> {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for Vec<u8> {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
}
}
impl PartialEq<String> for Bytes {
fn eq(&self, other: &String) -> bool {
*self == other[..]
}
}
impl PartialOrd<String> for Bytes {
fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
self.as_slice().partial_cmp(other.as_bytes())
}
}
impl PartialEq<Bytes> for String {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for String {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
}
}
impl PartialEq<Bytes> for &[u8] {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for &[u8] {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
}
}
impl PartialEq<Bytes> for &str {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for &str {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
}
}
impl<'a, T: ?Sized> PartialEq<&'a T> for Bytes
where
Bytes: PartialEq<T>,
{
fn eq(&self, other: &&'a T) -> bool {
*self == **other
}
}
impl<'a, T: ?Sized> PartialOrd<&'a T> for Bytes
where
Bytes: PartialOrd<T>,
{
fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
self.partial_cmp(&**other)
}
}
// impl From
impl Default for Bytes {
#[inline]
fn default() -> Bytes {
Bytes::new()
}
}
impl From<&'static [u8]> for Bytes {
fn from(slice: &'static [u8]) -> Bytes {
Bytes::from_static(slice)
}
}
impl From<&'static str> for Bytes {
fn from(slice: &'static str) -> Bytes {
Bytes::from_static(slice.as_bytes())
}
}
impl From<Vec<u8>> for Bytes {
fn from(vec: Vec<u8>) -> Bytes {
let mut vec = vec;
let ptr = vec.as_mut_ptr();
let len = vec.len();
let cap = vec.capacity();
// Avoid an extra allocation if possible.
if len == cap {
return Bytes::from(vec.into_boxed_slice());
}
let shared = Box::new(Shared {
buf: ptr,
cap,
ref_cnt: AtomicUsize::new(1),
});
mem::forget(vec);
let shared = Box::into_raw(shared);
// The pointer should be aligned, so this assert should
// always succeed.
debug_assert!(
0 == (shared as usize & KIND_MASK),
"internal: Box<Shared> should have an aligned pointer",
);
Bytes {
ptr,
len,
data: AtomicPtr::new(shared as _),
vtable: &SHARED_VTABLE,
}
}
}
impl From<Box<[u8]>> for Bytes {
fn from(slice: Box<[u8]>) -> Bytes {
// Box<[u8]> doesn't contain a heap allocation for empty slices,
// so the pointer isn't aligned enough for the KIND_VEC stashing to
// work.
if slice.is_empty() {
return Bytes::new();
}
let len = slice.len();
let ptr = Box::into_raw(slice) as *mut u8;
if ptr as usize & 0x1 == 0 {
let data = ptr_map(ptr, |addr| addr | KIND_VEC);
Bytes {
ptr,
len,
data: AtomicPtr::new(data.cast()),
vtable: &PROMOTABLE_EVEN_VTABLE,
}
} else {
Bytes {
ptr,
len,
data: AtomicPtr::new(ptr.cast()),
vtable: &PROMOTABLE_ODD_VTABLE,
}
}
}
}
impl From<String> for Bytes {
fn from(s: String) -> Bytes {
Bytes::from(s.into_bytes())
}
}
impl From<Bytes> for Vec<u8> {
fn from(bytes: Bytes) -> Vec<u8> {
let bytes = mem::ManuallyDrop::new(bytes);
unsafe { (bytes.vtable.to_vec)(&bytes.data, bytes.ptr, bytes.len) }
}
}
// ===== impl Vtable =====
impl fmt::Debug for Vtable {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Vtable")
.field("clone", &(self.clone as *const ()))
.field("drop", &(self.drop as *const ()))
.finish()
}
}
// ===== impl StaticVtable =====
const STATIC_VTABLE: Vtable = Vtable {
clone: static_clone,
to_vec: static_to_vec,
drop: static_drop,
};
unsafe fn static_clone(_: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
let slice = slice::from_raw_parts(ptr, len);
Bytes::from_static(slice)
}
unsafe fn static_to_vec(_: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
let slice = slice::from_raw_parts(ptr, len);
slice.to_vec()
}
unsafe fn static_drop(_: &mut AtomicPtr<()>, _: *const u8, _: usize) {
// nothing to drop for &'static [u8]
}
// ===== impl PromotableVtable =====
static PROMOTABLE_EVEN_VTABLE: Vtable = Vtable {
clone: promotable_even_clone,
to_vec: promotable_even_to_vec,
drop: promotable_even_drop,
};
static PROMOTABLE_ODD_VTABLE: Vtable = Vtable {
clone: promotable_odd_clone,
to_vec: promotable_odd_to_vec,
drop: promotable_odd_drop,
};
unsafe fn promotable_even_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
let shared = data.load(Ordering::Acquire);
let kind = shared as usize & KIND_MASK;
if kind == KIND_ARC {
shallow_clone_arc(shared.cast(), ptr, len)
} else {
debug_assert_eq!(kind, KIND_VEC);
let buf = ptr_map(shared.cast(), |addr| addr & !KIND_MASK);
shallow_clone_vec(data, shared, buf, ptr, len)
}
}
unsafe fn promotable_to_vec(
data: &AtomicPtr<()>,
ptr: *const u8,
len: usize,
f: fn(*mut ()) -> *mut u8,
) -> Vec<u8> {
let shared = data.load(Ordering::Acquire);
let kind = shared as usize & KIND_MASK;
if kind == KIND_ARC {
shared_to_vec_impl(shared.cast(), ptr, len)
} else {
// If Bytes holds a Vec, then the offset must be 0.
debug_assert_eq!(kind, KIND_VEC);
let buf = f(shared);
let cap = (ptr as usize - buf as usize) + len;
// Copy back buffer
ptr::copy(ptr, buf, len);
Vec::from_raw_parts(buf, len, cap)
}
}
unsafe fn promotable_even_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
promotable_to_vec(data, ptr, len, |shared| {
ptr_map(shared.cast(), |addr| addr & !KIND_MASK)
})
}
unsafe fn promotable_even_drop(data: &mut AtomicPtr<()>, ptr: *const u8, len: usize) {
data.with_mut(|shared| {
let shared = *shared;
let kind = shared as usize & KIND_MASK;
if kind == KIND_ARC {
release_shared(shared.cast());
} else {
debug_assert_eq!(kind, KIND_VEC);
let buf = ptr_map(shared.cast(), |addr| addr & !KIND_MASK);
free_boxed_slice(buf, ptr, len);
}
});
}
unsafe fn promotable_odd_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
let shared = data.load(Ordering::Acquire);
let kind = shared as usize & KIND_MASK;
if kind == KIND_ARC {
shallow_clone_arc(shared as _, ptr, len)
} else {
debug_assert_eq!(kind, KIND_VEC);
shallow_clone_vec(data, shared, shared.cast(), ptr, len)
}
}
unsafe fn promotable_odd_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
promotable_to_vec(data, ptr, len, |shared| shared.cast())
}
unsafe fn promotable_odd_drop(data: &mut AtomicPtr<()>, ptr: *const u8, len: usize) {
data.with_mut(|shared| {
let shared = *shared;
let kind = shared as usize & KIND_MASK;
if kind == KIND_ARC {
release_shared(shared.cast());
} else {
debug_assert_eq!(kind, KIND_VEC);
free_boxed_slice(shared.cast(), ptr, len);
}
});
}
unsafe fn free_boxed_slice(buf: *mut u8, offset: *const u8, len: usize) {
let cap = (offset as usize - buf as usize) + len;
dealloc(buf, Layout::from_size_align(cap, 1).unwrap())
}
// ===== impl SharedVtable =====
struct Shared {
// Holds arguments to dealloc upon Drop, but otherwise doesn't use them
buf: *mut u8,
cap: usize,
ref_cnt: AtomicUsize,
}
impl Drop for Shared {
fn drop(&mut self) {
unsafe { dealloc(self.buf, Layout::from_size_align(self.cap, 1).unwrap()) }
}
}
// Assert that the alignment of `Shared` is divisible by 2.
// This is a necessary invariant since we depend on allocating `Shared` a
// shared object to implicitly carry the `KIND_ARC` flag in its pointer.
// This flag is set when the LSB is 0.
const _: [(); 0 - mem::align_of::<Shared>() % 2] = []; // Assert that the alignment of `Shared` is divisible by 2.
static SHARED_VTABLE: Vtable = Vtable {
clone: shared_clone,
to_vec: shared_to_vec,
drop: shared_drop,
};
const KIND_ARC: usize = 0b0;
const KIND_VEC: usize = 0b1;
const KIND_MASK: usize = 0b1;
unsafe fn shared_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
let shared = data.load(Ordering::Relaxed);
shallow_clone_arc(shared as _, ptr, len)
}
unsafe fn shared_to_vec_impl(shared: *mut Shared, ptr: *const u8, len: usize) -> Vec<u8> {
// Check that the ref_cnt is 1 (unique).
//
// If it is unique, then it is set to 0 with AcqRel fence for the same
// reason in release_shared.
//
// Otherwise, we take the other branch and call release_shared.
if (*shared)
.ref_cnt
.compare_exchange(1, 0, Ordering::AcqRel, Ordering::Relaxed)
.is_ok()
{
let buf = (*shared).buf;
let cap = (*shared).cap;
// Deallocate Shared
drop(Box::from_raw(shared as *mut mem::ManuallyDrop<Shared>));
// Copy back buffer
ptr::copy(ptr, buf, len);
Vec::from_raw_parts(buf, len, cap)
} else {
let v = slice::from_raw_parts(ptr, len).to_vec();
release_shared(shared);
v
}
}
unsafe fn shared_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
shared_to_vec_impl(data.load(Ordering::Relaxed).cast(), ptr, len)
}
unsafe fn shared_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) {
data.with_mut(|shared| {
release_shared(shared.cast());
});
}
unsafe fn shallow_clone_arc(shared: *mut Shared, ptr: *const u8, len: usize) -> Bytes {
let old_size = (*shared).ref_cnt.fetch_add(1, Ordering::Relaxed);
if old_size > usize::MAX >> 1 {
crate::abort();
}
Bytes {
ptr,
len,
data: AtomicPtr::new(shared as _),
vtable: &SHARED_VTABLE,
}
}
#[cold]
unsafe fn shallow_clone_vec(
atom: &AtomicPtr<()>,
ptr: *const (),
buf: *mut u8,
offset: *const u8,
len: usize,
) -> Bytes {
// If the buffer is still tracked in a `Vec<u8>`. It is time to
// promote the vec to an `Arc`. This could potentially be called
// concurrently, so some care must be taken.
// First, allocate a new `Shared` instance containing the
// `Vec` fields. It's important to note that `ptr`, `len`,
// and `cap` cannot be mutated without having `&mut self`.
// This means that these fields will not be concurrently
// updated and since the buffer hasn't been promoted to an
// `Arc`, those three fields still are the components of the
// vector.
let shared = Box::new(Shared {
buf,
cap: (offset as usize - buf as usize) + len,
// Initialize refcount to 2. One for this reference, and one
// for the new clone that will be returned from
// `shallow_clone`.
ref_cnt: AtomicUsize::new(2),
});
let shared = Box::into_raw(shared);
// The pointer should be aligned, so this assert should
// always succeed.
debug_assert!(
0 == (shared as usize & KIND_MASK),
"internal: Box<Shared> should have an aligned pointer",
);
// Try compare & swapping the pointer into the `arc` field.
// `Release` is used synchronize with other threads that
// will load the `arc` field.
//
// If the `compare_exchange` fails, then the thread lost the
// race to promote the buffer to shared. The `Acquire`
// ordering will synchronize with the `compare_exchange`
// that happened in the other thread and the `Shared`
// pointed to by `actual` will be visible.
match atom.compare_exchange(ptr as _, shared as _, Ordering::AcqRel, Ordering::Acquire) {
Ok(actual) => {
debug_assert!(actual as usize == ptr as usize);
// The upgrade was successful, the new handle can be
// returned.
Bytes {
ptr: offset,
len,
data: AtomicPtr::new(shared as _),
vtable: &SHARED_VTABLE,
}
}
Err(actual) => {
// The upgrade failed, a concurrent clone happened. Release
// the allocation that was made in this thread, it will not
// be needed.
let shared = Box::from_raw(shared);
mem::forget(*shared);
// Buffer already promoted to shared storage, so increment ref
// count.
shallow_clone_arc(actual as _, offset, len)
}
}
}
unsafe fn release_shared(ptr: *mut Shared) {
// `Shared` storage... follow the drop steps from Arc.
if (*ptr).ref_cnt.fetch_sub(1, Ordering::Release) != 1 {
return;
}
// This fence is needed to prevent reordering of use of the data and
// deletion of the data. Because it is marked `Release`, the decreasing
// of the reference count synchronizes with this `Acquire` fence. This
// means that use of the data happens before decreasing the reference
// count, which happens before this fence, which happens before the
// deletion of the data.
//
// As explained in the [Boost documentation][1],
//
// > It is important to enforce any possible access to the object in one
// > thread (through an existing reference) to *happen before* deleting
// > the object in a different thread. This is achieved by a "release"
// > operation after dropping a reference (any access to the object
// > through this reference must obviously happened before), and an
// > "acquire" operation before deleting the object.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
//
// Thread sanitizer does not support atomic fences. Use an atomic load
// instead.
(*ptr).ref_cnt.load(Ordering::Acquire);
// Drop the data
drop(Box::from_raw(ptr));
}
// Ideally we would always use this version of `ptr_map` since it is strict
// provenance compatible, but it results in worse codegen. We will however still
// use it on miri because it gives better diagnostics for people who test bytes
// code with miri.
//
// See https://github.com/tokio-rs/bytes/pull/545 for more info.
#[cfg(miri)]
fn ptr_map<F>(ptr: *mut u8, f: F) -> *mut u8
where
F: FnOnce(usize) -> usize,
{
let old_addr = ptr as usize;
let new_addr = f(old_addr);
let diff = new_addr.wrapping_sub(old_addr);
ptr.wrapping_add(diff)
}
#[cfg(not(miri))]
fn ptr_map<F>(ptr: *mut u8, f: F) -> *mut u8
where
F: FnOnce(usize) -> usize,
{
let old_addr = ptr as usize;
let new_addr = f(old_addr);
new_addr as *mut u8
}
// compile-fails
/// ```compile_fail
/// use bytes::Bytes;
/// #[deny(unused_must_use)]
/// {
/// let mut b1 = Bytes::from("hello world");
/// b1.split_to(6);
/// }
/// ```
fn _split_to_must_use() {}
/// ```compile_fail
/// use bytes::Bytes;
/// #[deny(unused_must_use)]
/// {
/// let mut b1 = Bytes::from("hello world");
/// b1.split_off(6);
/// }
/// ```
fn _split_off_must_use() {}
// fuzz tests
#[cfg(all(test, loom))]
mod fuzz {
use loom::sync::Arc;
use loom::thread;
use super::Bytes;
#[test]
fn bytes_cloning_vec() {
loom::model(|| {
let a = Bytes::from(b"abcdefgh".to_vec());
let addr = a.as_ptr() as usize;
// test the Bytes::clone is Sync by putting it in an Arc
let a1 = Arc::new(a);
let a2 = a1.clone();
let t1 = thread::spawn(move || {
let b: Bytes = (*a1).clone();
assert_eq!(b.as_ptr() as usize, addr);
});
let t2 = thread::spawn(move || {
let b: Bytes = (*a2).clone();
assert_eq!(b.as_ptr() as usize, addr);
});
t1.join().unwrap();
t2.join().unwrap();
});
}
}