1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
//! Lock-free intrusive linked list.
//!
//! Ideas from Michael.  High Performance Dynamic Lock-Free Hash Tables and List-Based Sets.  SPAA
//! 2002.  <http://dl.acm.org/citation.cfm?id=564870.564881>

use core::marker::PhantomData;
use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};

use crate::{unprotected, Atomic, Guard, Shared};

/// An entry in a linked list.
///
/// An Entry is accessed from multiple threads, so it would be beneficial to put it in a different
/// cache-line than thread-local data in terms of performance.
#[derive(Debug)]
pub(crate) struct Entry {
    /// The next entry in the linked list.
    /// If the tag is 1, this entry is marked as deleted.
    next: Atomic<Entry>,
}

/// Implementing this trait asserts that the type `T` can be used as an element in the intrusive
/// linked list defined in this module. `T` has to contain (or otherwise be linked to) an instance
/// of `Entry`.
///
/// # Example
///
/// ```ignore
/// struct A {
///     entry: Entry,
///     data: usize,
/// }
///
/// impl IsElement<A> for A {
///     fn entry_of(a: &A) -> &Entry {
///         let entry_ptr = ((a as usize) + offset_of!(A, entry)) as *const Entry;
///         unsafe { &*entry_ptr }
///     }
///
///     unsafe fn element_of(entry: &Entry) -> &T {
///         let elem_ptr = ((entry as usize) - offset_of!(A, entry)) as *const T;
///         &*elem_ptr
///     }
///
///     unsafe fn finalize(entry: &Entry, guard: &Guard) {
///         guard.defer_destroy(Shared::from(Self::element_of(entry) as *const _));
///     }
/// }
/// ```
///
/// This trait is implemented on a type separate from `T` (although it can be just `T`), because
/// one type might be placeable into multiple lists, in which case it would require multiple
/// implementations of `IsElement`. In such cases, each struct implementing `IsElement<T>`
/// represents a distinct `Entry` in `T`.
///
/// For example, we can insert the following struct into two lists using `entry1` for one
/// and `entry2` for the other:
///
/// ```ignore
/// struct B {
///     entry1: Entry,
///     entry2: Entry,
///     data: usize,
/// }
/// ```
///
pub(crate) trait IsElement<T> {
    /// Returns a reference to this element's `Entry`.
    fn entry_of(_: &T) -> &Entry;

    /// Given a reference to an element's entry, returns that element.
    ///
    /// ```ignore
    /// let elem = ListElement::new();
    /// assert_eq!(elem.entry_of(),
    ///            unsafe { ListElement::element_of(elem.entry_of()) } );
    /// ```
    ///
    /// # Safety
    ///
    /// The caller has to guarantee that the `Entry` is called with was retrieved from an instance
    /// of the element type (`T`).
    unsafe fn element_of(_: &Entry) -> &T;

    /// The function that is called when an entry is unlinked from list.
    ///
    /// # Safety
    ///
    /// The caller has to guarantee that the `Entry` is called with was retrieved from an instance
    /// of the element type (`T`).
    unsafe fn finalize(_: &Entry, _: &Guard);
}

/// A lock-free, intrusive linked list of type `T`.
#[derive(Debug)]
pub(crate) struct List<T, C: IsElement<T> = T> {
    /// The head of the linked list.
    head: Atomic<Entry>,

    /// The phantom data for using `T` and `C`.
    _marker: PhantomData<(T, C)>,
}

/// An iterator used for retrieving values from the list.
pub(crate) struct Iter<'g, T, C: IsElement<T>> {
    /// The guard that protects the iteration.
    guard: &'g Guard,

    /// Pointer from the predecessor to the current entry.
    pred: &'g Atomic<Entry>,

    /// The current entry.
    curr: Shared<'g, Entry>,

    /// The list head, needed for restarting iteration.
    head: &'g Atomic<Entry>,

    /// Logically, we store a borrow of an instance of `T` and
    /// use the type information from `C`.
    _marker: PhantomData<(&'g T, C)>,
}

/// An error that occurs during iteration over the list.
#[derive(PartialEq, Debug)]
pub(crate) enum IterError {
    /// A concurrent thread modified the state of the list at the same place that this iterator
    /// was inspecting. Subsequent iteration will restart from the beginning of the list.
    Stalled,
}

impl Default for Entry {
    /// Returns the empty entry.
    fn default() -> Self {
        Self {
            next: Atomic::null(),
        }
    }
}

impl Entry {
    /// Marks this entry as deleted, deferring the actual deallocation to a later iteration.
    ///
    /// # Safety
    ///
    /// The entry should be a member of a linked list, and it should not have been deleted.
    /// It should be safe to call `C::finalize` on the entry after the `guard` is dropped, where `C`
    /// is the associated helper for the linked list.
    pub(crate) unsafe fn delete(&self, guard: &Guard) {
        self.next.fetch_or(1, Release, guard);
    }
}

impl<T, C: IsElement<T>> List<T, C> {
    /// Returns a new, empty linked list.
    pub(crate) fn new() -> Self {
        Self {
            head: Atomic::null(),
            _marker: PhantomData,
        }
    }

    /// Inserts `entry` into the head of the list.
    ///
    /// # Safety
    ///
    /// You should guarantee that:
    ///
    /// - `container` is not null
    /// - `container` is immovable, e.g. inside an `Owned`
    /// - the same `Entry` is not inserted more than once
    /// - the inserted object will be removed before the list is dropped
    pub(crate) unsafe fn insert<'g>(&'g self, container: Shared<'g, T>, guard: &'g Guard) {
        // Insert right after head, i.e. at the beginning of the list.
        let to = &self.head;
        // Get the intrusively stored Entry of the new element to insert.
        let entry: &Entry = C::entry_of(container.deref());
        // Make a Shared ptr to that Entry.
        let entry_ptr = Shared::from(entry as *const _);
        // Read the current successor of where we want to insert.
        let mut next = to.load(Relaxed, guard);

        loop {
            // Set the Entry of the to-be-inserted element to point to the previous successor of
            // `to`.
            entry.next.store(next, Relaxed);
            match to.compare_exchange_weak(next, entry_ptr, Release, Relaxed, guard) {
                Ok(_) => break,
                // We lost the race or weak CAS failed spuriously. Update the successor and try
                // again.
                Err(err) => next = err.current,
            }
        }
    }

    /// Returns an iterator over all objects.
    ///
    /// # Caveat
    ///
    /// Every object that is inserted at the moment this function is called and persists at least
    /// until the end of iteration will be returned. Since this iterator traverses a lock-free
    /// linked list that may be concurrently modified, some additional caveats apply:
    ///
    /// 1. If a new object is inserted during iteration, it may or may not be returned.
    /// 2. If an object is deleted during iteration, it may or may not be returned.
    /// 3. The iteration may be aborted when it lost in a race condition. In this case, the winning
    ///    thread will continue to iterate over the same list.
    pub(crate) fn iter<'g>(&'g self, guard: &'g Guard) -> Iter<'g, T, C> {
        Iter {
            guard,
            pred: &self.head,
            curr: self.head.load(Acquire, guard),
            head: &self.head,
            _marker: PhantomData,
        }
    }
}

impl<T, C: IsElement<T>> Drop for List<T, C> {
    fn drop(&mut self) {
        unsafe {
            let guard = unprotected();
            let mut curr = self.head.load(Relaxed, guard);
            while let Some(c) = curr.as_ref() {
                let succ = c.next.load(Relaxed, guard);
                // Verify that all elements have been removed from the list.
                assert_eq!(succ.tag(), 1);

                C::finalize(curr.deref(), guard);
                curr = succ;
            }
        }
    }
}

impl<'g, T: 'g, C: IsElement<T>> Iterator for Iter<'g, T, C> {
    type Item = Result<&'g T, IterError>;

    fn next(&mut self) -> Option<Self::Item> {
        while let Some(c) = unsafe { self.curr.as_ref() } {
            let succ = c.next.load(Acquire, self.guard);

            if succ.tag() == 1 {
                // This entry was removed. Try unlinking it from the list.
                let succ = succ.with_tag(0);

                // The tag should always be zero, because removing a node after a logically deleted
                // node leaves the list in an invalid state.
                debug_assert!(self.curr.tag() == 0);

                // Try to unlink `curr` from the list, and get the new value of `self.pred`.
                let succ = match self
                    .pred
                    .compare_exchange(self.curr, succ, Acquire, Acquire, self.guard)
                {
                    Ok(_) => {
                        // We succeeded in unlinking `curr`, so we have to schedule
                        // deallocation. Deferred drop is okay, because `list.delete()` can only be
                        // called if `T: 'static`.
                        unsafe {
                            C::finalize(self.curr.deref(), self.guard);
                        }

                        // `succ` is the new value of `self.pred`.
                        succ
                    }
                    Err(e) => {
                        // `e.current` is the current value of `self.pred`.
                        e.current
                    }
                };

                // If the predecessor node is already marked as deleted, we need to restart from
                // `head`.
                if succ.tag() != 0 {
                    self.pred = self.head;
                    self.curr = self.head.load(Acquire, self.guard);

                    return Some(Err(IterError::Stalled));
                }

                // Move over the removed by only advancing `curr`, not `pred`.
                self.curr = succ;
                continue;
            }

            // Move one step forward.
            self.pred = &c.next;
            self.curr = succ;

            return Some(Ok(unsafe { C::element_of(c) }));
        }

        // We reached the end of the list.
        None
    }
}

#[cfg(all(test, not(crossbeam_loom)))]
mod tests {
    use super::*;
    use crate::{Collector, Owned};
    use crossbeam_utils::thread;
    use std::sync::Barrier;

    impl IsElement<Entry> for Entry {
        fn entry_of(entry: &Entry) -> &Entry {
            entry
        }

        unsafe fn element_of(entry: &Entry) -> &Entry {
            entry
        }

        unsafe fn finalize(entry: &Entry, guard: &Guard) {
            guard.defer_destroy(Shared::from(Self::element_of(entry) as *const _));
        }
    }

    /// Checks whether the list retains inserted elements
    /// and returns them in the correct order.
    #[test]
    fn insert() {
        let collector = Collector::new();
        let handle = collector.register();
        let guard = handle.pin();

        let l: List<Entry> = List::new();

        let e1 = Owned::new(Entry::default()).into_shared(&guard);
        let e2 = Owned::new(Entry::default()).into_shared(&guard);
        let e3 = Owned::new(Entry::default()).into_shared(&guard);

        unsafe {
            l.insert(e1, &guard);
            l.insert(e2, &guard);
            l.insert(e3, &guard);
        }

        let mut iter = l.iter(&guard);
        let maybe_e3 = iter.next();
        assert!(maybe_e3.is_some());
        assert!(maybe_e3.unwrap().unwrap() as *const Entry == e3.as_raw());
        let maybe_e2 = iter.next();
        assert!(maybe_e2.is_some());
        assert!(maybe_e2.unwrap().unwrap() as *const Entry == e2.as_raw());
        let maybe_e1 = iter.next();
        assert!(maybe_e1.is_some());
        assert!(maybe_e1.unwrap().unwrap() as *const Entry == e1.as_raw());
        assert!(iter.next().is_none());

        unsafe {
            e1.as_ref().unwrap().delete(&guard);
            e2.as_ref().unwrap().delete(&guard);
            e3.as_ref().unwrap().delete(&guard);
        }
    }

    /// Checks whether elements can be removed from the list and whether
    /// the correct elements are removed.
    #[test]
    fn delete() {
        let collector = Collector::new();
        let handle = collector.register();
        let guard = handle.pin();

        let l: List<Entry> = List::new();

        let e1 = Owned::new(Entry::default()).into_shared(&guard);
        let e2 = Owned::new(Entry::default()).into_shared(&guard);
        let e3 = Owned::new(Entry::default()).into_shared(&guard);
        unsafe {
            l.insert(e1, &guard);
            l.insert(e2, &guard);
            l.insert(e3, &guard);
            e2.as_ref().unwrap().delete(&guard);
        }

        let mut iter = l.iter(&guard);
        let maybe_e3 = iter.next();
        assert!(maybe_e3.is_some());
        assert!(maybe_e3.unwrap().unwrap() as *const Entry == e3.as_raw());
        let maybe_e1 = iter.next();
        assert!(maybe_e1.is_some());
        assert!(maybe_e1.unwrap().unwrap() as *const Entry == e1.as_raw());
        assert!(iter.next().is_none());

        unsafe {
            e1.as_ref().unwrap().delete(&guard);
            e3.as_ref().unwrap().delete(&guard);
        }

        let mut iter = l.iter(&guard);
        assert!(iter.next().is_none());
    }

    const THREADS: usize = 8;
    const ITERS: usize = 512;

    /// Contends the list on insert and delete operations to make sure they can run concurrently.
    #[test]
    fn insert_delete_multi() {
        let collector = Collector::new();

        let l: List<Entry> = List::new();
        let b = Barrier::new(THREADS);

        thread::scope(|s| {
            for _ in 0..THREADS {
                s.spawn(|_| {
                    b.wait();

                    let handle = collector.register();
                    let guard: Guard = handle.pin();
                    let mut v = Vec::with_capacity(ITERS);

                    for _ in 0..ITERS {
                        let e = Owned::new(Entry::default()).into_shared(&guard);
                        v.push(e);
                        unsafe {
                            l.insert(e, &guard);
                        }
                    }

                    for e in v {
                        unsafe {
                            e.as_ref().unwrap().delete(&guard);
                        }
                    }
                });
            }
        })
        .unwrap();

        let handle = collector.register();
        let guard = handle.pin();

        let mut iter = l.iter(&guard);
        assert!(iter.next().is_none());
    }

    /// Contends the list on iteration to make sure that it can be iterated over concurrently.
    #[test]
    fn iter_multi() {
        let collector = Collector::new();

        let l: List<Entry> = List::new();
        let b = Barrier::new(THREADS);

        thread::scope(|s| {
            for _ in 0..THREADS {
                s.spawn(|_| {
                    b.wait();

                    let handle = collector.register();
                    let guard: Guard = handle.pin();
                    let mut v = Vec::with_capacity(ITERS);

                    for _ in 0..ITERS {
                        let e = Owned::new(Entry::default()).into_shared(&guard);
                        v.push(e);
                        unsafe {
                            l.insert(e, &guard);
                        }
                    }

                    let mut iter = l.iter(&guard);
                    for _ in 0..ITERS {
                        assert!(iter.next().is_some());
                    }

                    for e in v {
                        unsafe {
                            e.as_ref().unwrap().delete(&guard);
                        }
                    }
                });
            }
        })
        .unwrap();

        let handle = collector.register();
        let guard = handle.pin();

        let mut iter = l.iter(&guard);
        assert!(iter.next().is_none());
    }
}