1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
//! Serial numbers.
//!
//! DNS uses 32 bit serial numbers in various places that are conceptionally
//! viewed as the 32 bit modulus of a larger number space. Because of that,
//! special rules apply when processing these values. This module provides
//! the type [`Serial`] that implements these rules.
use super::cmp::CanonicalOrd;
use super::scan::{Scan, Scanner};
use super::wire::{Compose, Composer, Parse, ParseError};
#[cfg(feature = "chrono")]
use chrono::{DateTime, TimeZone};
use core::cmp::Ordering;
use core::{cmp, fmt, str};
#[cfg(all(feature = "std", test))]
use mock_instant::thread_local::{SystemTime, UNIX_EPOCH};
use octseq::parse::Parser;
#[cfg(all(feature = "std", not(test)))]
use std::time::{SystemTime, UNIX_EPOCH};
//------------ Serial --------------------------------------------------------
/// A serial number.
///
/// Serial numbers are used in DNS to track changes to resources. For
/// instance, the [`Soa`][crate::rdata::rfc1035::Soa] record type provides
/// a serial number that expresses the version of the zone. Since these
/// numbers are only 32 bits long, they
/// can wrap. [RFC 1982] defined the semantics for doing arithmetics in the
/// face of these wrap-arounds. This type implements these semantics atop a
/// native `u32`.
///
/// The RFC defines two operations: addition and comparison.
///
/// For addition, the amount added can only be a positive number of up to
/// `2^31 - 1`. Because of this, we decided to not implement the
/// [`Add`] trait but rather have a dedicated method `add` so as to not cause
/// surprise panics.
///
/// Serial numbers only implement a partial ordering. That is, there are
/// pairs of values that are not equal but there still isn’t one value larger
/// than the other. Since this is neatly implemented by the [`PartialOrd`]
/// trait, the type implements that.
///
/// [`Add`]: std::ops::Add
/// [RFC 1982]: https://tools.ietf.org/html/rfc1982
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Serial(pub u32);
impl Serial {
/// Returns a serial number for the current Unix time.
#[cfg(feature = "std")]
#[must_use]
pub fn now() -> Self {
let now = SystemTime::now();
let value = match now.duration_since(UNIX_EPOCH) {
Ok(value) => value,
Err(_) => UNIX_EPOCH.duration_since(now).unwrap(),
};
Self(value.as_secs() as u32)
}
/// Creates a new serial number from its octets in big endian notation.
#[must_use]
pub fn from_be_bytes(bytes: [u8; 4]) -> Self {
Self(u32::from_be_bytes(bytes))
}
/// Returns the serial number as a raw integer.
#[must_use]
pub fn into_int(self) -> u32 {
self.0
}
/// Add `other` to `self`.
///
/// Serial numbers only allow values of up to `2^31 - 1` to be added to
/// them. Therefore, this method requires `other` to be a `u32` instead
/// of a `Serial` to indicate that you cannot simply add two serials
/// together. This is also why we don’t implement the `Add` trait.
///
/// # Panics
///
/// This method panics if `other` is greater than `2^31 - 1`.
#[allow(clippy::should_implement_trait)]
#[must_use]
pub fn add(self, other: u32) -> Self {
assert!(other <= 0x7FFF_FFFF);
Serial(self.0.wrapping_add(other))
}
pub fn scan<S: Scanner>(scanner: &mut S) -> Result<Self, S::Error> {
u32::scan(scanner).map(Into::into)
}
}
/// # Parsing and Composing
///
impl Serial {
pub const COMPOSE_LEN: u16 = u32::COMPOSE_LEN;
pub fn parse<Octs: AsRef<[u8]> + ?Sized>(
parser: &mut Parser<Octs>,
) -> Result<Self, ParseError> {
u32::parse(parser).map(Into::into)
}
pub fn compose<Target: Composer + ?Sized>(
&self,
target: &mut Target,
) -> Result<(), Target::AppendError> {
self.0.compose(target)
}
}
//--- From and FromStr
impl From<u32> for Serial {
fn from(value: u32) -> Serial {
Serial(value)
}
}
impl From<Serial> for u32 {
fn from(serial: Serial) -> u32 {
serial.0
}
}
#[cfg(feature = "chrono")]
#[cfg_attr(docsrs, doc(cfg(feature = "chrono")))]
impl<T: TimeZone> From<DateTime<T>> for Serial {
fn from(value: DateTime<T>) -> Self {
Self(value.timestamp() as u32)
}
}
impl str::FromStr for Serial {
type Err = <u32 as str::FromStr>::Err;
fn from_str(s: &str) -> Result<Self, Self::Err> {
<u32 as str::FromStr>::from_str(s).map(Into::into)
}
}
//--- Display
impl fmt::Display for Serial {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
//--- PartialOrd
impl cmp::PartialOrd for Serial {
fn partial_cmp(&self, other: &Serial) -> Option<cmp::Ordering> {
match self.0.cmp(&other.0) {
Ordering::Equal => Some(Ordering::Equal),
Ordering::Less => {
let sub = other.0 - self.0;
match sub.cmp(&0x8000_0000) {
Ordering::Less => Some(Ordering::Less),
Ordering::Greater => Some(Ordering::Greater),
Ordering::Equal => None,
}
}
Ordering::Greater => {
let sub = self.0 - other.0;
match sub.cmp(&0x8000_0000) {
Ordering::Less => Some(Ordering::Greater),
Ordering::Greater => Some(Ordering::Less),
Ordering::Equal => None,
}
}
}
}
}
impl CanonicalOrd for Serial {
fn canonical_cmp(&self, other: &Self) -> cmp::Ordering {
self.0.cmp(&other.0)
}
}
//============ Errors ========================================================
#[derive(Clone, Copy, Debug)]
pub struct IllegalSignatureTime(());
impl fmt::Display for IllegalSignatureTime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str("illegal signature time")
}
}
#[cfg(feature = "std")]
impl std::error::Error for IllegalSignatureTime {}
//============ Testing =======================================================
#[cfg(test)]
mod test {
use super::*;
#[test]
fn good_addition() {
assert_eq!(Serial(0).add(4), Serial(4));
assert_eq!(
Serial(0xFF00_0000).add(0x0F00_0000),
Serial(
((0xFF00_0000u64 + 0x0F00_0000u64) % 0x1_0000_0000) as u32
)
);
}
#[test]
#[should_panic]
fn bad_addition() {
let _ = Serial(0).add(0x8000_0000);
}
#[test]
fn comparison() {
use core::cmp::Ordering::*;
assert_eq!(Serial(12), Serial(12));
assert_ne!(Serial(12), Serial(112));
assert_eq!(Serial(12).partial_cmp(&Serial(12)), Some(Equal));
// s1 is said to be less than s2 if [...]
// (i1 < i2 and i2 - i1 < 2^(SERIAL_BITS - 1))
assert_eq!(Serial(12).partial_cmp(&Serial(13)), Some(Less));
assert_ne!(
Serial(12).partial_cmp(&Serial(3_000_000_012)),
Some(Less)
);
// or (i1 > i2 and i1 - i2 > 2^(SERIAL_BITS - 1))
assert_eq!(
Serial(3_000_000_012).partial_cmp(&Serial(12)),
Some(Less)
);
assert_ne!(Serial(13).partial_cmp(&Serial(12)), Some(Less));
// s1 is said to be greater than s2 if [...]
// (i1 < i2 and i2 - i1 > 2^(SERIAL_BITS - 1))
assert_eq!(
Serial(12).partial_cmp(&Serial(3_000_000_012)),
Some(Greater)
);
assert_ne!(Serial(12).partial_cmp(&Serial(13)), Some(Greater));
// (i1 > i2 and i1 - i2 < 2^(SERIAL_BITS - 1))
assert_eq!(Serial(13).partial_cmp(&Serial(12)), Some(Greater));
assert_ne!(
Serial(3_000_000_012).partial_cmp(&Serial(12)),
Some(Greater)
);
// Er, I think that’s what’s left.
assert_eq!(Serial(1).partial_cmp(&Serial(0x8000_0001)), None);
assert_eq!(Serial(0x8000_0001).partial_cmp(&Serial(1)), None);
}
}