1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
//! Underlying transport protocols.
use core::future::Future;
use core::pin::Pin;
use std::boxed::Box;
use std::io;
use std::net::SocketAddr;
use std::task::{Context, Poll};
use tokio::io::ReadBuf;
use tokio::net::{TcpStream, UdpSocket};
/// How many times do we try a new random port if we get ‘address in use.’
const RETRY_RANDOM_PORT: usize = 10;
//------------ AsyncConnect --------------------------------------------------
/// Establish a connection asynchronously.
///
///
pub trait AsyncConnect {
/// The type of an established connection.
type Connection;
/// The future establishing the connection.
type Fut: Future<Output = Result<Self::Connection, io::Error>>
+ Send
+ Sync;
/// Returns a future that establishing a connection.
fn connect(&self) -> Self::Fut;
}
//------------ TcpConnect --------------------------------------------------
/// Create new TCP connections.
#[derive(Clone, Copy, Debug)]
pub struct TcpConnect {
/// Remote address to connect to.
addr: SocketAddr,
}
impl TcpConnect {
/// Create new TCP connections.
///
/// addr is the destination address to connect to.
pub fn new(addr: SocketAddr) -> Self {
Self { addr }
}
}
impl AsyncConnect for TcpConnect {
type Connection = TcpStream;
type Fut = Pin<
Box<
dyn Future<Output = Result<Self::Connection, std::io::Error>>
+ Send
+ Sync,
>,
>;
fn connect(&self) -> Self::Fut {
Box::pin(TcpStream::connect(self.addr))
}
}
//------------ TlsConnect -----------------------------------------------------
/// Create new TLS connections
#[cfg(feature = "tokio-rustls")]
#[derive(Clone, Debug)]
pub struct TlsConnect {
/// Configuration for setting up a TLS connection.
client_config: std::sync::Arc<tokio_rustls::rustls::ClientConfig>,
/// Server name for certificate verification.
server_name: tokio_rustls::rustls::pki_types::ServerName<'static>,
/// Remote address to connect to.
addr: SocketAddr,
}
#[cfg(feature = "tokio-rustls")]
impl TlsConnect {
/// Function to create a new TLS connection stream
pub fn new<Conf>(
client_config: Conf,
server_name: tokio_rustls::rustls::pki_types::ServerName<'static>,
addr: SocketAddr,
) -> Self
where
Conf: Into<std::sync::Arc<tokio_rustls::rustls::ClientConfig>>,
{
Self {
client_config: client_config.into(),
server_name,
addr,
}
}
}
#[cfg(feature = "tokio-rustls")]
impl AsyncConnect for TlsConnect {
type Connection = tokio_rustls::client::TlsStream<TcpStream>;
type Fut = Pin<
Box<
dyn Future<Output = Result<Self::Connection, std::io::Error>>
+ Send
+ Sync,
>,
>;
fn connect(&self) -> Self::Fut {
let tls_connection =
tokio_rustls::TlsConnector::from(self.client_config.clone());
let server_name = self.server_name.clone();
let addr = self.addr;
Box::pin(async move {
let box_connection = Box::new(tls_connection);
let tcp = TcpStream::connect(addr).await?;
box_connection.connect(server_name, tcp).await
})
}
}
//------------ UdpConnect --------------------------------------------------
/// Create new UDP connections.
#[derive(Clone, Copy, Debug)]
pub struct UdpConnect {
/// Remote address to connect to.
addr: SocketAddr,
}
impl UdpConnect {
/// Create new UDP connections.
///
/// addr is the destination address to connect to.
pub fn new(addr: SocketAddr) -> Self {
Self { addr }
}
/// Bind to a random local UDP port.
async fn bind_and_connect(self) -> Result<UdpSocket, io::Error> {
let mut i = 0;
let sock = loop {
let local: SocketAddr = if self.addr.is_ipv4() {
([0u8; 4], 0).into()
} else {
([0u16; 8], 0).into()
};
match UdpSocket::bind(&local).await {
Ok(sock) => break sock,
Err(err) => {
if i == RETRY_RANDOM_PORT {
return Err(err);
} else {
i += 1
}
}
}
};
sock.connect(self.addr).await?;
Ok(sock)
}
}
impl AsyncConnect for UdpConnect {
type Connection = UdpSocket;
type Fut = Pin<
Box<
dyn Future<Output = Result<Self::Connection, std::io::Error>>
+ Send
+ Sync,
>,
>;
fn connect(&self) -> Self::Fut {
Box::pin(self.bind_and_connect())
}
}
//------------ AsyncDgramRecv -------------------------------------------------
/// Receive a datagram packets asynchronously.
pub trait AsyncDgramRecv {
/// Polled receive.
fn poll_recv(
&self,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<Result<(), io::Error>>;
}
impl AsyncDgramRecv for UdpSocket {
fn poll_recv(
&self,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<Result<(), io::Error>> {
UdpSocket::poll_recv(self, cx, buf)
}
}
//------------ AsyncDgramRecvEx -----------------------------------------------
/// Convenvience trait to turn poll_recv into an asynchronous function.
pub trait AsyncDgramRecvEx: AsyncDgramRecv {
/// Asynchronous receive function.
fn recv<'a>(&'a mut self, buf: &'a mut [u8]) -> DgramRecv<'a, Self>
where
Self: Unpin,
{
DgramRecv {
receiver: self,
buf,
}
}
}
impl<R: AsyncDgramRecv> AsyncDgramRecvEx for R {}
//------------ DgramRecv -----------------------------------------------------
/// Return value of recv. This captures the future for recv.
pub struct DgramRecv<'a, R: ?Sized> {
/// The receiver of the datagram.
receiver: &'a R,
/// Buffer to store the datagram.
buf: &'a mut [u8],
}
impl<R: AsyncDgramRecv + Unpin> Future for DgramRecv<'_, R> {
type Output = io::Result<usize>;
fn poll(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<io::Result<usize>> {
let receiver = self.receiver;
let mut buf = ReadBuf::new(self.buf);
match Pin::new(receiver).poll_recv(cx, &mut buf) {
Poll::Pending => return Poll::Pending,
Poll::Ready(res) => {
if let Err(err) = res {
return Poll::Ready(Err(err));
}
}
}
Poll::Ready(Ok(buf.filled().len()))
}
}
//------------ AsyncDgramSend -------------------------------------------------
/// Send a datagram packet asynchronously.
///
///
pub trait AsyncDgramSend {
/// Polled send function.
fn poll_send(
&self,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<Result<usize, io::Error>>;
}
impl AsyncDgramSend for UdpSocket {
fn poll_send(
&self,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<Result<usize, io::Error>> {
UdpSocket::poll_send(self, cx, buf)
}
}
//------------ AsyncDgramSendEx ----------------------------------------------
/// Convenience trait that turns poll_send into an asynchronous function.
pub trait AsyncDgramSendEx: AsyncDgramSend {
/// Asynchronous function to send a packet.
fn send<'a>(&'a self, buf: &'a [u8]) -> DgramSend<'a, Self>
where
Self: Unpin,
{
DgramSend { sender: self, buf }
}
}
impl<S: AsyncDgramSend> AsyncDgramSendEx for S {}
//------------ DgramSend -----------------------------------------------------
/// This is the return value of send. It captures the future for send.
pub struct DgramSend<'a, S: ?Sized> {
/// The datagram send object.
sender: &'a S,
/// The buffer that needs to be sent.
buf: &'a [u8],
}
impl<S: AsyncDgramSend + Unpin> Future for DgramSend<'_, S> {
type Output = io::Result<usize>;
fn poll(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<io::Result<usize>> {
Pin::new(self.sender).poll_send(cx, self.buf)
}
}