domain/net/client/redundant.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
//! A transport that multiplexes requests over multiple redundant transports.
use bytes::Bytes;
use futures_util::stream::FuturesUnordered;
use futures_util::StreamExt;
use octseq::Octets;
use rand::random;
use std::boxed::Box;
use std::cmp::Ordering;
use std::fmt::{Debug, Formatter};
use std::future::Future;
use std::pin::Pin;
use std::vec::Vec;
use tokio::sync::{mpsc, oneshot};
use tokio::time::{sleep_until, Duration, Instant};
use crate::base::iana::OptRcode;
use crate::base::Message;
use crate::net::client::request::{Error, GetResponse, SendRequest};
/*
Basic algorithm:
- keep track of expected response time for every upstream
- start with the upstream with the lowest expected response time
- set a timer to the expect response time.
- if the timer expires before reply arrives, send the query to the next lowest
and set a timer
- when a reply arrives update the expected response time for the relevant
upstream and for the ones that failed.
Based on a random number generator:
- pick a different upstream rather then the best but set the timer to the
expected response time of the best.
*/
/// Capacity of the channel that transports [ChanReq].
const DEF_CHAN_CAP: usize = 8;
/// Time in milliseconds for the initial response time estimate.
const DEFAULT_RT_MS: u64 = 300;
/// The initial response time estimate for unused connections.
const DEFAULT_RT: Duration = Duration::from_millis(DEFAULT_RT_MS);
/// Maintain a moving average for the measured response time and the
/// square of that. The window is SMOOTH_N.
const SMOOTH_N: f64 = 8.;
/// Chance to probe a worse connection.
const PROBE_P: f64 = 0.05;
/// Avoid sending two requests at the same time.
///
/// When a worse connection is probed, give it a slight head start.
const PROBE_RT: Duration = Duration::from_millis(1);
//------------ Config ---------------------------------------------------------
/// User configuration variables.
#[derive(Clone, Copy, Debug, Default)]
pub struct Config {
/// Defer transport errors.
pub defer_transport_error: bool,
/// Defer replies that report Refused.
pub defer_refused: bool,
/// Defer replies that report ServFail.
pub defer_servfail: bool,
}
//------------ Connection -----------------------------------------------------
/// This type represents a transport connection.
#[derive(Debug)]
pub struct Connection<Req>
where
Req: Send + Sync,
{
/// User configuation.
config: Config,
/// To send a request to the runner.
sender: mpsc::Sender<ChanReq<Req>>,
}
impl<Req: Clone + Debug + Send + Sync + 'static> Connection<Req> {
/// Create a new connection.
pub fn new() -> (Self, Transport<Req>) {
Self::with_config(Default::default())
}
/// Create a new connection with a given config.
pub fn with_config(config: Config) -> (Self, Transport<Req>) {
let (sender, receiver) = mpsc::channel(DEF_CHAN_CAP);
(Self { config, sender }, Transport::new(receiver))
}
/// Add a transport connection.
pub async fn add(
&self,
conn: Box<dyn SendRequest<Req> + Send + Sync>,
) -> Result<(), Error> {
let (tx, rx) = oneshot::channel();
self.sender
.send(ChanReq::Add(AddReq { conn, tx }))
.await
.expect("send should not fail");
rx.await.expect("receive should not fail")
}
/// Implementation of the query method.
async fn request_impl(
self,
request_msg: Req,
) -> Result<Message<Bytes>, Error> {
let (tx, rx) = oneshot::channel();
self.sender
.send(ChanReq::GetRT(RTReq { tx }))
.await
.expect("send should not fail");
let conn_rt = rx.await.expect("receive should not fail")?;
Query::new(self.config, request_msg, conn_rt, self.sender.clone())
.get_response()
.await
}
}
impl<Req> Clone for Connection<Req>
where
Req: Send + Sync,
{
fn clone(&self) -> Self {
Self {
config: self.config,
sender: self.sender.clone(),
}
}
}
impl<Req: Clone + Debug + Send + Sync + 'static> SendRequest<Req>
for Connection<Req>
{
fn send_request(
&self,
request_msg: Req,
) -> Box<dyn GetResponse + Send + Sync> {
Box::new(Request {
fut: Box::pin(self.clone().request_impl(request_msg)),
})
}
}
//------------ Request -------------------------------------------------------
/// An active request.
pub struct Request {
/// The underlying future.
fut: Pin<
Box<dyn Future<Output = Result<Message<Bytes>, Error>> + Send + Sync>,
>,
}
impl Request {
/// Async function that waits for the future stored in Query to complete.
async fn get_response_impl(&mut self) -> Result<Message<Bytes>, Error> {
(&mut self.fut).await
}
}
impl GetResponse for Request {
fn get_response(
&mut self,
) -> Pin<
Box<
dyn Future<Output = Result<Message<Bytes>, Error>>
+ Send
+ Sync
+ '_,
>,
> {
Box::pin(self.get_response_impl())
}
}
impl Debug for Request {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
f.debug_struct("Request")
.field("fut", &format_args!("_"))
.finish()
}
}
//------------ Query --------------------------------------------------------
/// This type represents an active query request.
#[derive(Debug)]
pub struct Query<Req>
where
Req: Send + Sync,
{
/// User configuration.
config: Config,
/// The state of the query
state: QueryState,
/// The request message
request_msg: Req,
/// List of connections identifiers and estimated response times.
conn_rt: Vec<ConnRT>,
/// Channel to send requests to the run function.
sender: mpsc::Sender<ChanReq<Req>>,
/// List of futures for outstanding requests.
fut_list: FuturesUnordered<
Pin<Box<dyn Future<Output = FutListOutput> + Send + Sync>>,
>,
/// Transport error that should be reported if nothing better shows
/// up.
deferred_transport_error: Option<Error>,
/// Reply that should be returned to the user if nothing better shows
/// up.
deferred_reply: Option<Message<Bytes>>,
/// The result from one of the connectons.
result: Option<Result<Message<Bytes>, Error>>,
/// Index of the connection that returned a result.
res_index: usize,
}
/// The various states a query can be in.
#[derive(Debug)]
enum QueryState {
/// The initial state
Init,
/// Start a request on a specific connection.
Probe(usize),
/// Report the response time for a specific index in the list.
Report(usize),
/// Wait for one of the requests to finish.
Wait,
}
/// The commands that can be sent to the run function.
enum ChanReq<Req>
where
Req: Send + Sync,
{
/// Add a connection
Add(AddReq<Req>),
/// Get the list of estimated response times for all connections
GetRT(RTReq),
/// Start a query
Query(RequestReq<Req>),
/// Report how long it took to get a response
Report(TimeReport),
/// Report that a connection failed to provide a timely response
Failure(TimeReport),
}
impl<Req> Debug for ChanReq<Req>
where
Req: Send + Sync,
{
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
f.debug_struct("ChanReq").finish()
}
}
/// Request to add a new connection
struct AddReq<Req> {
/// New connection to add
conn: Box<dyn SendRequest<Req> + Send + Sync>,
/// Channel to send the reply to
tx: oneshot::Sender<AddReply>,
}
/// Reply to an Add request
type AddReply = Result<(), Error>;
/// Request to give the estimated response times for all connections
struct RTReq /*<Octs>*/ {
/// Channel to send the reply to
tx: oneshot::Sender<RTReply>,
}
/// Reply to a RT request
type RTReply = Result<Vec<ConnRT>, Error>;
/// Request to start a request
struct RequestReq<Req>
where
Req: Send + Sync,
{
/// Identifier of connection
id: u64,
/// Request message
request_msg: Req,
/// Channel to send the reply to
tx: oneshot::Sender<RequestReply>,
}
impl<Req: Debug> Debug for RequestReq<Req>
where
Req: Send + Sync,
{
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
f.debug_struct("RequestReq")
.field("id", &self.id)
.field("request_msg", &self.request_msg)
.finish()
}
}
/// Reply to a request request.
type RequestReply = Result<Box<dyn GetResponse + Send + Sync>, Error>;
/// Report the amount of time until success or failure.
#[derive(Debug)]
struct TimeReport {
/// Identifier of the transport connection.
id: u64,
/// Time spend waiting for a reply.
elapsed: Duration,
}
/// Connection statistics to compute the estimated response time.
struct ConnStats {
/// Aproximation of the windowed average of response times.
mean: f64,
/// Aproximation of the windowed average of the square of response times.
mean_sq: f64,
}
/// Data required to schedule requests and report timing results.
#[derive(Clone, Debug)]
struct ConnRT {
/// Estimated response time.
est_rt: Duration,
/// Identifier of the connection.
id: u64,
/// Start of a request using this connection.
start: Option<Instant>,
}
/// Result of the futures in fut_list.
type FutListOutput = (usize, Result<Message<Bytes>, Error>);
impl<Req: Clone + Send + Sync + 'static> Query<Req> {
/// Create a new query object.
fn new(
config: Config,
request_msg: Req,
mut conn_rt: Vec<ConnRT>,
sender: mpsc::Sender<ChanReq<Req>>,
) -> Self {
let conn_rt_len = conn_rt.len();
conn_rt.sort_unstable_by(conn_rt_cmp);
// Do we want to probe a less performant upstream?
if conn_rt_len > 1 && random::<f64>() < PROBE_P {
let index: usize = 1 + random::<usize>() % (conn_rt_len - 1);
conn_rt[index].est_rt = PROBE_RT;
// Sort again
conn_rt.sort_unstable_by(conn_rt_cmp);
}
Self {
config,
request_msg,
conn_rt,
sender,
state: QueryState::Init,
fut_list: FuturesUnordered::new(),
deferred_transport_error: None,
deferred_reply: None,
result: None,
res_index: 0,
}
}
/// Implementation of get_response.
async fn get_response(&mut self) -> Result<Message<Bytes>, Error> {
loop {
match self.state {
QueryState::Init => {
if self.conn_rt.is_empty() {
return Err(Error::NoTransportAvailable);
}
self.state = QueryState::Probe(0);
continue;
}
QueryState::Probe(ind) => {
self.conn_rt[ind].start = Some(Instant::now());
let fut = start_request(
ind,
self.conn_rt[ind].id,
self.sender.clone(),
self.request_msg.clone(),
);
self.fut_list.push(Box::pin(fut));
let timeout = Instant::now() + self.conn_rt[ind].est_rt;
loop {
tokio::select! {
res = self.fut_list.next() => {
let res = res.expect("res should not be empty");
match res.1 {
Err(ref err) => {
if self.config.defer_transport_error {
if self.deferred_transport_error.is_none() {
self.deferred_transport_error = Some(err.clone());
}
if res.0 == ind {
// The current upstream finished,
// try the next one, if any.
self.state =
if ind+1 < self.conn_rt.len() {
QueryState::Probe(ind+1)
}
else
{
QueryState::Wait
};
// Break out of receive loop
break;
}
// Just continue receiving
continue;
}
// Return error to the user.
}
Ok(ref msg) => {
if skip(msg, &self.config) {
if self.deferred_reply.is_none() {
self.deferred_reply = Some(msg.clone());
}
if res.0 == ind {
// The current upstream finished,
// try the next one, if any.
self.state =
if ind+1 < self.conn_rt.len() {
QueryState::Probe(ind+1)
}
else
{
QueryState::Wait
};
// Break out of receive loop
break;
}
// Just continue receiving
continue;
}
// Now we have a reply that can be
// returned to the user.
}
}
self.result = Some(res.1);
self.res_index= res.0;
self.state = QueryState::Report(0);
// Break out of receive loop
break;
}
_ = sleep_until(timeout) => {
// Move to the next Probe state if there
// are more upstreams to try, otherwise
// move to the Wait state.
self.state =
if ind+1 < self.conn_rt.len() {
QueryState::Probe(ind+1)
}
else {
QueryState::Wait
};
// Break out of receive loop
break;
}
}
}
// Continue with state machine loop
continue;
}
QueryState::Report(ind) => {
if ind >= self.conn_rt.len()
|| self.conn_rt[ind].start.is_none()
{
// Nothing more to report. Return result.
let res = self
.result
.take()
.expect("result should not be empty");
return res;
}
let start = self.conn_rt[ind]
.start
.expect("start time should not be empty");
let elapsed = start.elapsed();
let time_report = TimeReport {
id: self.conn_rt[ind].id,
elapsed,
};
let report = if ind == self.res_index {
// Succesfull entry
ChanReq::Report(time_report)
} else {
// Failed entry
ChanReq::Failure(time_report)
};
// Send could fail but we don't care.
let _ = self.sender.send(report).await;
self.state = QueryState::Report(ind + 1);
continue;
}
QueryState::Wait => {
loop {
if self.fut_list.is_empty() {
// We have nothing left. There should be a reply or
// an error. Prefer a reply over an error.
if self.deferred_reply.is_some() {
let msg = self
.deferred_reply
.take()
.expect("just checked for Some");
return Ok(msg);
}
if self.deferred_transport_error.is_some() {
let err = self
.deferred_transport_error
.take()
.expect("just checked for Some");
return Err(err);
}
panic!("either deferred_reply or deferred_error should be present");
}
let res = self.fut_list.next().await;
let res = res.expect("res should not be empty");
match res.1 {
Err(ref err) => {
if self.config.defer_transport_error {
if self.deferred_transport_error.is_none()
{
self.deferred_transport_error =
Some(err.clone());
}
// Just continue with the next future, or
// finish if fut_list is empty.
continue;
}
// Return error to the user.
}
Ok(ref msg) => {
if skip(msg, &self.config) {
if self.deferred_reply.is_none() {
self.deferred_reply =
Some(msg.clone());
}
// Just continue with the next future, or
// finish if fut_list is empty.
continue;
}
// Return reply to user.
}
}
self.result = Some(res.1);
self.res_index = res.0;
self.state = QueryState::Report(0);
// Break out of loop to continue with the state machine
break;
}
continue;
}
}
}
}
}
//------------ Transport -----------------------------------------------------
/// Type that actually implements the connection.
#[derive(Debug)]
pub struct Transport<Req>
where
Req: Send + Sync,
{
/// Receive side of the channel used by the runner.
receiver: mpsc::Receiver<ChanReq<Req>>,
}
impl<'a, Req: Clone + Send + Sync + 'static> Transport<Req> {
/// Implementation of the new method.
fn new(receiver: mpsc::Receiver<ChanReq<Req>>) -> Self {
Self { receiver }
}
/// Run method.
pub async fn run(mut self) {
let mut next_id: u64 = 10;
let mut conn_stats: Vec<ConnStats> = Vec::new();
let mut conn_rt: Vec<ConnRT> = Vec::new();
let mut conns: Vec<Box<dyn SendRequest<Req> + Send + Sync>> =
Vec::new();
loop {
let req = match self.receiver.recv().await {
Some(req) => req,
None => break, // All references to connection objects are
// dropped. Shutdown.
};
match req {
ChanReq::Add(add_req) => {
let id = next_id;
next_id += 1;
conn_stats.push(ConnStats {
mean: (DEFAULT_RT_MS as f64) / 1000.,
mean_sq: 0.,
});
conn_rt.push(ConnRT {
id,
est_rt: DEFAULT_RT,
start: None,
});
conns.push(add_req.conn);
// Don't care if send fails
let _ = add_req.tx.send(Ok(()));
}
ChanReq::GetRT(rt_req) => {
// Don't care if send fails
let _ = rt_req.tx.send(Ok(conn_rt.clone()));
}
ChanReq::Query(request_req) => {
let opt_ind =
conn_rt.iter().position(|e| e.id == request_req.id);
match opt_ind {
Some(ind) => {
let query = conns[ind]
.send_request(request_req.request_msg);
// Don't care if send fails
let _ = request_req.tx.send(Ok(query));
}
None => {
// Don't care if send fails
let _ = request_req
.tx
.send(Err(Error::RedundantTransportNotFound));
}
}
}
ChanReq::Report(time_report) => {
let opt_ind =
conn_rt.iter().position(|e| e.id == time_report.id);
if let Some(ind) = opt_ind {
let elapsed = time_report.elapsed.as_secs_f64();
conn_stats[ind].mean +=
(elapsed - conn_stats[ind].mean) / SMOOTH_N;
let elapsed_sq = elapsed * elapsed;
conn_stats[ind].mean_sq +=
(elapsed_sq - conn_stats[ind].mean_sq) / SMOOTH_N;
let mean = conn_stats[ind].mean;
let var = conn_stats[ind].mean_sq - mean * mean;
let std_dev =
if var < 0. { 0. } else { f64::sqrt(var) };
let est_rt = mean + 3. * std_dev;
conn_rt[ind].est_rt = Duration::from_secs_f64(est_rt);
}
}
ChanReq::Failure(time_report) => {
let opt_ind =
conn_rt.iter().position(|e| e.id == time_report.id);
if let Some(ind) = opt_ind {
let elapsed = time_report.elapsed.as_secs_f64();
if elapsed < conn_stats[ind].mean {
// Do not update the mean if a
// failure took less time than the
// current mean.
continue;
}
conn_stats[ind].mean +=
(elapsed - conn_stats[ind].mean) / SMOOTH_N;
let elapsed_sq = elapsed * elapsed;
conn_stats[ind].mean_sq +=
(elapsed_sq - conn_stats[ind].mean_sq) / SMOOTH_N;
let mean = conn_stats[ind].mean;
let var = conn_stats[ind].mean_sq - mean * mean;
let std_dev =
if var < 0. { 0. } else { f64::sqrt(var) };
let est_rt = mean + 3. * std_dev;
conn_rt[ind].est_rt = Duration::from_secs_f64(est_rt);
}
}
}
}
}
}
//------------ Utility --------------------------------------------------------
/// Async function to send a request and wait for the reply.
///
/// This gives a single future that we can put in a list.
async fn start_request<Req>(
index: usize,
id: u64,
sender: mpsc::Sender<ChanReq<Req>>,
request_msg: Req,
) -> (usize, Result<Message<Bytes>, Error>)
where
Req: Send + Sync,
{
let (tx, rx) = oneshot::channel();
sender
.send(ChanReq::Query(RequestReq {
id,
request_msg,
tx,
}))
.await
.expect("send is expected to work");
let mut request = match rx.await.expect("receive is expected to work") {
Err(err) => return (index, Err(err)),
Ok(request) => request,
};
let reply = request.get_response().await;
(index, reply)
}
/// Compare ConnRT elements based on estimated response time.
fn conn_rt_cmp(e1: &ConnRT, e2: &ConnRT) -> Ordering {
e1.est_rt.cmp(&e2.est_rt)
}
/// Return if this reply should be skipped or not.
fn skip<Octs: Octets>(msg: &Message<Octs>, config: &Config) -> bool {
// Check if we actually need to check.
if !config.defer_refused && !config.defer_servfail {
return false;
}
let opt_rcode = msg.opt_rcode();
// OptRcode needs PartialEq
if let OptRcode::REFUSED = opt_rcode {
if config.defer_refused {
return true;
}
}
if let OptRcode::SERVFAIL = opt_rcode {
if config.defer_servfail {
return true;
}
}
false
}