1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
//! A stub resolver.
//!
//! The most simple resolver possible simply relays all messages to one of a
//! set of pre-configured resolvers that will do the actual work. This is
//! equivalent to what the resolver part of the C library does. This module
//! provides such a stub resolver that emulates this C resolver as closely
//! as possible, in particular in the way it is being configured.
//!
//! The main type is [`StubResolver`] that implements the [`Resolver`] trait
//! and thus can be used with the various lookup functions.
use self::conf::{
ResolvConf, ResolvOptions, SearchSuffix, ServerConf, Transport,
};
use crate::base::iana::Rcode;
use crate::base::message::Message;
use crate::base::message_builder::{AdditionalBuilder, MessageBuilder};
use crate::base::name::{ToName, ToRelativeName};
use crate::base::question::Question;
use crate::net::client::dgram_stream;
use crate::net::client::multi_stream;
use crate::net::client::protocol::{TcpConnect, UdpConnect};
use crate::net::client::redundant;
use crate::net::client::request::{
ComposeRequest, Error, RequestMessage, SendRequest,
};
use crate::resolv::lookup::addr::{lookup_addr, FoundAddrs};
use crate::resolv::lookup::host::{lookup_host, search_host, FoundHosts};
use crate::resolv::lookup::srv::{lookup_srv, FoundSrvs, SrvError};
use crate::resolv::resolver::{Resolver, SearchNames};
use bytes::Bytes;
use futures_util::stream::{FuturesUnordered, StreamExt};
use octseq::array::Array;
use std::boxed::Box;
use std::fmt::Debug;
use std::future::Future;
use std::net::IpAddr;
use std::pin::Pin;
use std::string::ToString;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use std::vec::Vec;
use std::{io, ops};
#[cfg(feature = "resolv-sync")]
use tokio::runtime;
use tokio::sync::Mutex;
use tokio::time::timeout;
//------------ Sub-modules ---------------------------------------------------
pub mod conf;
//------------ Module Configuration ------------------------------------------
//------------ StubResolver --------------------------------------------------
/// A DNS stub resolver.
///
/// This type collects all information making it possible to start DNS
/// queries. You can create a new resolver using the system’s configuration
/// using the [`new`] associate function or using your own configuration with
/// [`from_conf`].
///
/// Stub resolver values can be cloned relatively cheaply as they keep all
/// information behind an arc.
///
/// If you want to run a single query or lookup on a resolver synchronously,
/// you can do so simply by using the [`run`] or [`run_with_conf`] associated
/// functions.
///
/// [`new`]: #method.new
/// [`from_conf`]: #method.from_conf
/// [`query`]: #method.query
/// [`run`]: #method.run
/// [`run_with_conf`]: #method.run_with_conf
#[derive(Debug)]
pub struct StubResolver {
transport: Mutex<Option<redundant::Connection<RequestMessage<Vec<u8>>>>>,
/// Resolver options.
options: ResolvOptions,
servers: Vec<ServerConf>,
}
impl StubResolver {
/// Creates a new resolver using the system’s default configuration.
pub fn new() -> Self {
Self::from_conf(ResolvConf::default())
}
/// Creates a new resolver using the given configuraiton.
pub fn from_conf(conf: ResolvConf) -> Self {
StubResolver {
transport: None.into(),
options: conf.options,
servers: conf.servers,
}
}
pub fn options(&self) -> &ResolvOptions {
&self.options
}
pub async fn query<N: ToName, Q: Into<Question<N>>>(
&self,
question: Q,
) -> Result<Answer, io::Error> {
Query::new(self)?
.run(Query::create_message(question.into()))
.await
}
async fn query_message(
&self,
message: QueryMessage,
) -> Result<Answer, io::Error> {
Query::new(self)?.run(message).await
}
async fn setup_transport<
CR: Clone + Debug + ComposeRequest + Send + Sync + 'static,
>(
&self,
) -> Result<redundant::Connection<CR>, Error> {
// Create a redundant transport and fill it with the right transports
let (redun, transp) = redundant::Connection::new();
// Start the run function on a separate task.
let redun_run_fut = transp.run();
// It would be nice to have just one task. However redun.run() has to
// execute before we can call redun.add(). However, we need to know
// the type of the elements we add to FuturesUnordered. For the moment
// we have two tasks.
tokio::spawn(async move {
redun_run_fut.await;
});
let fut_list_tcp = FuturesUnordered::new();
let fut_list_udp_tcp = FuturesUnordered::new();
// Start the tasks with empty base transports. We need redun to be
// running before we can add transports.
// We have 3 modes of operation: use_vc: only use TCP, ign_tc: only
// UDP no fallback to TCP, and normal with is UDP falling back to TCP.
for s in &self.servers {
// This assumes that Transport only has UdpTcp and Tcp. Sadly, a
// match doesn’t work here because of the use_cv flag.
if self.options.use_vc || matches!(s.transport, Transport::Tcp) {
let (conn, tran) =
multi_stream::Connection::new(TcpConnect::new(s.addr));
// Start the run function on a separate task.
fut_list_tcp.push(tran.run());
redun.add(Box::new(conn)).await?;
} else {
let udp_connect = UdpConnect::new(s.addr);
let tcp_connect = TcpConnect::new(s.addr);
let (conn, tran) =
dgram_stream::Connection::new(udp_connect, tcp_connect);
// Start the run function on a separate task.
fut_list_udp_tcp.push(tran.run());
redun.add(Box::new(conn)).await?;
}
}
tokio::spawn(async move {
run(fut_list_tcp, fut_list_udp_tcp).await;
});
Ok(redun)
}
async fn get_transport(
&self,
) -> Result<redundant::Connection<RequestMessage<Vec<u8>>>, Error> {
let mut opt_transport = self.transport.lock().await;
match &*opt_transport {
Some(transport) => Ok(transport.clone()),
None => {
let transport = self.setup_transport().await?;
*opt_transport = Some(transport.clone());
Ok(transport)
}
}
}
}
async fn run<TcpFut: Future, UdpTcpFut: Future>(
mut fut_list_tcp: FuturesUnordered<TcpFut>,
mut fut_list_udp_tcp: FuturesUnordered<UdpTcpFut>,
) {
loop {
let tcp_empty = fut_list_tcp.is_empty();
let udp_tcp_empty = fut_list_udp_tcp.is_empty();
if tcp_empty && udp_tcp_empty {
break;
}
tokio::select! {
_ = fut_list_tcp.next(), if !tcp_empty => {
// Nothing to do
}
_ = fut_list_udp_tcp.next(), if !udp_tcp_empty => {
// Nothing to do
}
}
}
}
impl StubResolver {
pub async fn lookup_addr(
&self,
addr: IpAddr,
) -> Result<FoundAddrs<&Self>, io::Error> {
lookup_addr(&self, addr).await
}
pub async fn lookup_host(
&self,
qname: impl ToName,
) -> Result<FoundHosts<&Self>, io::Error> {
lookup_host(&self, qname).await
}
pub async fn search_host(
&self,
qname: impl ToRelativeName,
) -> Result<FoundHosts<&Self>, io::Error> {
search_host(&self, qname).await
}
/// Performs an SRV lookup using this resolver.
///
/// See the documentation for the [`lookup_srv`] function for details.
pub async fn lookup_srv(
&self,
service: impl ToRelativeName,
name: impl ToName,
fallback_port: u16,
) -> Result<Option<FoundSrvs>, SrvError> {
lookup_srv(&self, service, name, fallback_port).await
}
}
#[cfg(feature = "resolv-sync")]
#[cfg_attr(docsrs, doc(cfg(feature = "resolv-sync")))]
impl StubResolver {
/// Synchronously perform a DNS operation atop a standard resolver.
///
/// This associated functions removes almost all boiler plate for the
/// case that you want to perform some DNS operation, either a query or
/// lookup, on a resolver using the system’s configuration and wait for
/// the result.
///
/// The only argument is a closure taking a reference to a [`StubResolver`]
/// and returning a future. Whatever that future resolves to will be
/// returned.
pub fn run<R, T, E, F>(op: F) -> R::Output
where
R: Future<Output = Result<T, E>> + Send + 'static,
E: From<io::Error>,
F: FnOnce(StubResolver) -> R + Send + 'static,
{
Self::run_with_conf(ResolvConf::default(), op)
}
/// Synchronously perform a DNS operation atop a configured resolver.
///
/// This is like [`run`] but also takes a resolver configuration for
/// tailor-making your own resolver.
///
/// [`run`]: Self::run
pub fn run_with_conf<R, T, E, F>(conf: ResolvConf, op: F) -> R::Output
where
R: Future<Output = Result<T, E>> + Send + 'static,
E: From<io::Error>,
F: FnOnce(StubResolver) -> R + Send + 'static,
{
let resolver = Self::from_conf(conf);
let runtime = runtime::Builder::new_current_thread()
.enable_all()
.build()?;
runtime.block_on(op(resolver))
}
}
impl Default for StubResolver {
fn default() -> Self {
Self::new()
}
}
impl<'a> Resolver for &'a StubResolver {
type Octets = Bytes;
type Answer = Answer;
type Query =
Pin<Box<dyn Future<Output = Result<Answer, io::Error>> + Send + 'a>>;
fn query<N, Q>(&self, question: Q) -> Self::Query
where
N: ToName,
Q: Into<Question<N>>,
{
let message = Query::create_message(question.into());
Box::pin(self.query_message(message))
}
}
impl<'a> SearchNames for &'a StubResolver {
type Name = SearchSuffix;
type Iter = SearchIter<'a>;
fn search_iter(&self) -> Self::Iter {
SearchIter {
resolver: self,
pos: 0,
}
}
}
//------------ Query ---------------------------------------------------------
pub struct Query<'a> {
/// The resolver whose configuration we are using.
resolver: &'a StubResolver,
edns: Arc<AtomicBool>,
/// The preferred error to return.
///
/// Every time we finish a single query, we see if we can update this with
/// a better one. If we finally have to fail, we return this result. This
/// is a result so we can return a servfail answer if that is the only
/// answer we get. (Remember, SERVFAIL is returned for a bogus answer, so
/// you might want to know.)
error: Result<Answer, io::Error>,
}
impl<'a> Query<'a> {
pub fn new(resolver: &'a StubResolver) -> Result<Self, io::Error> {
Ok(Query {
resolver,
edns: Arc::new(AtomicBool::new(true)),
error: Err(io::Error::new(
io::ErrorKind::TimedOut,
"all timed out",
)),
})
}
pub async fn run(
mut self,
mut message: QueryMessage,
) -> Result<Answer, io::Error> {
loop {
match self.run_query(&mut message).await {
Ok(answer) => {
if answer.header().rcode() == Rcode::FORMERR
&& self.does_edns()
{
// FORMERR with EDNS: turn off EDNS and try again.
self.disable_edns();
continue;
} else if answer.header().rcode() == Rcode::SERVFAIL {
// SERVFAIL: go to next server.
self.update_error_servfail(answer);
} else {
// I guess we have an answer ...
return Ok(answer);
}
}
Err(err) => self.update_error(err),
}
return self.error;
}
}
fn create_message(question: Question<impl ToName>) -> QueryMessage {
let mut message = MessageBuilder::from_target(Default::default())
.expect("MessageBuilder should not fail");
message.header_mut().set_rd(true);
let mut message = message.question();
message.push(question).expect("push should not fail");
message.additional()
}
async fn run_query(
&mut self,
message: &mut QueryMessage,
) -> Result<Answer, io::Error> {
let msg = Message::from_octets(message.as_target().to_vec())
.expect("Message::from_octets should not fail");
let request_msg = RequestMessage::new(msg).map_err(|e| {
io::Error::new(io::ErrorKind::Other, e.to_string())
})?;
let transport = self.resolver.get_transport().await.map_err(|e| {
io::Error::new(io::ErrorKind::Other, e.to_string())
})?;
let mut gr_fut = transport.send_request(request_msg);
let reply =
timeout(self.resolver.options.timeout, gr_fut.get_response())
.await?
.map_err(|e| {
io::Error::new(io::ErrorKind::Other, e.to_string())
})?;
Ok(Answer { message: reply })
}
fn update_error(&mut self, err: io::Error) {
// We keep the last error except for timeouts or if we have a servfail
// answer already. Since we start with a timeout, we still get a that
// if everything times out.
if err.kind() != io::ErrorKind::TimedOut && self.error.is_err() {
self.error = Err(err)
}
}
fn update_error_servfail(&mut self, answer: Answer) {
self.error = Ok(answer)
}
pub fn does_edns(&self) -> bool {
self.edns.load(Ordering::Relaxed)
}
pub fn disable_edns(&self) {
self.edns.store(false, Ordering::Relaxed);
}
}
//------------ QueryMessage --------------------------------------------------
// XXX This needs to be re-evaluated if we start adding OPTions to the query.
pub(super) type QueryMessage = AdditionalBuilder<Array<512>>;
//------------ Answer --------------------------------------------------------
/// The answer to a question.
///
/// This type is a wrapper around the DNS [`Message`] containing the answer
/// that provides some additional information.
#[derive(Clone)]
pub struct Answer {
message: Message<Bytes>,
}
impl Answer {
/// Returns whether the answer is a final answer to be returned.
pub fn is_final(&self) -> bool {
(self.message.header().rcode() == Rcode::NOERROR
|| self.message.header().rcode() == Rcode::NXDOMAIN)
&& !self.message.header().tc()
}
/// Returns whether the answer is truncated.
pub fn is_truncated(&self) -> bool {
self.message.header().tc()
}
pub fn into_message(self) -> Message<Bytes> {
self.message
}
}
impl From<Message<Bytes>> for Answer {
fn from(message: Message<Bytes>) -> Self {
Answer { message }
}
}
impl ops::Deref for Answer {
type Target = Message<Bytes>;
fn deref(&self) -> &Self::Target {
&self.message
}
}
impl AsRef<Message<Bytes>> for Answer {
fn as_ref(&self) -> &Message<Bytes> {
&self.message
}
}
//------------ SearchIter ----------------------------------------------------
#[derive(Clone, Debug)]
pub struct SearchIter<'a> {
resolver: &'a StubResolver,
pos: usize,
}
impl<'a> Iterator for SearchIter<'a> {
type Item = SearchSuffix;
fn next(&mut self) -> Option<Self::Item> {
if let Some(res) = self.resolver.options().search.get(self.pos) {
self.pos += 1;
Some(res.clone())
} else {
None
}
}
}