1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
//! A stub resolver.
//!
//! The most simple resolver possible simply relays all messages to one of a
//! set of pre-configured resolvers that will do the actual work. This is
//! equivalent to what the resolver part of the C library does. This module
//! provides such a stub resolver that emulates this C resolver as closely
//! as possible, in particular in the way it is being configured.
//!
//! The main type is [`StubResolver`] that implements the [`Resolver`] trait
//! and thus can be used with the various lookup functions.

use self::conf::{
    ResolvConf, ResolvOptions, SearchSuffix, ServerConf, Transport,
};
use crate::base::iana::Rcode;
use crate::base::message::Message;
use crate::base::message_builder::{AdditionalBuilder, MessageBuilder};
use crate::base::name::{ToName, ToRelativeName};
use crate::base::question::Question;
use crate::net::client::dgram_stream;
use crate::net::client::multi_stream;
use crate::net::client::protocol::{TcpConnect, UdpConnect};
use crate::net::client::redundant;
use crate::net::client::request::{
    ComposeRequest, Error, RequestMessage, SendRequest,
};
use crate::resolv::lookup::addr::{lookup_addr, FoundAddrs};
use crate::resolv::lookup::host::{lookup_host, search_host, FoundHosts};
use crate::resolv::lookup::srv::{lookup_srv, FoundSrvs, SrvError};
use crate::resolv::resolver::{Resolver, SearchNames};
use bytes::Bytes;
use futures_util::stream::{FuturesUnordered, StreamExt};
use octseq::array::Array;
use std::boxed::Box;
use std::fmt::Debug;
use std::future::Future;
use std::net::IpAddr;
use std::pin::Pin;
use std::string::ToString;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use std::vec::Vec;
use std::{io, ops};
#[cfg(feature = "resolv-sync")]
use tokio::runtime;
use tokio::sync::Mutex;
use tokio::time::timeout;

//------------ Sub-modules ---------------------------------------------------

pub mod conf;

//------------ Module Configuration ------------------------------------------

//------------ StubResolver --------------------------------------------------

/// A DNS stub resolver.
///
/// This type collects all information making it possible to start DNS
/// queries. You can create a new resolver using the system’s configuration
/// using the [`new`] associate function or using your own configuration with
/// [`from_conf`].
///
/// Stub resolver values can be cloned relatively cheaply as they keep all
/// information behind an arc.
///
/// If you want to run a single query or lookup on a resolver synchronously,
/// you can do so simply by using the [`run`] or [`run_with_conf`] associated
/// functions.
///
/// [`new`]: #method.new
/// [`from_conf`]: #method.from_conf
/// [`query`]: #method.query
/// [`run`]: #method.run
/// [`run_with_conf`]: #method.run_with_conf
#[derive(Debug)]
pub struct StubResolver {
    transport: Mutex<Option<redundant::Connection<RequestMessage<Vec<u8>>>>>,

    /// Resolver options.
    options: ResolvOptions,

    servers: Vec<ServerConf>,
}

impl StubResolver {
    /// Creates a new resolver using the system’s default configuration.
    pub fn new() -> Self {
        Self::from_conf(ResolvConf::default())
    }

    /// Creates a new resolver using the given configuraiton.
    pub fn from_conf(conf: ResolvConf) -> Self {
        StubResolver {
            transport: None.into(),
            options: conf.options,

            servers: conf.servers,
        }
    }

    pub fn options(&self) -> &ResolvOptions {
        &self.options
    }

    pub async fn query<N: ToName, Q: Into<Question<N>>>(
        &self,
        question: Q,
    ) -> Result<Answer, io::Error> {
        Query::new(self)?
            .run(Query::create_message(question.into()))
            .await
    }

    async fn query_message(
        &self,
        message: QueryMessage,
    ) -> Result<Answer, io::Error> {
        Query::new(self)?.run(message).await
    }

    async fn setup_transport<
        CR: Clone + Debug + ComposeRequest + Send + Sync + 'static,
    >(
        &self,
    ) -> Result<redundant::Connection<CR>, Error> {
        // Create a redundant transport and fill it with the right transports
        let (redun, transp) = redundant::Connection::new();

        // Start the run function on a separate task.
        let redun_run_fut = transp.run();

        // It would be nice to have just one task. However redun.run() has to
        // execute before we can call redun.add(). However, we need to know
        // the type of the elements we add to FuturesUnordered. For the moment
        // we have two tasks.
        tokio::spawn(async move {
            redun_run_fut.await;
        });

        let fut_list_tcp = FuturesUnordered::new();
        let fut_list_udp_tcp = FuturesUnordered::new();

        // Start the tasks with empty base transports. We need redun to be
        // running before we can add transports.

        // We have 3 modes of operation: use_vc: only use TCP, ign_tc: only
        // UDP no fallback to TCP, and normal with is UDP falling back to TCP.

        for s in &self.servers {
            // This assumes that Transport only has UdpTcp and Tcp. Sadly, a
            // match doesn’t work here because of the use_cv flag.
            if self.options.use_vc || matches!(s.transport, Transport::Tcp) {
                let (conn, tran) =
                    multi_stream::Connection::new(TcpConnect::new(s.addr));
                // Start the run function on a separate task.
                fut_list_tcp.push(tran.run());
                redun.add(Box::new(conn)).await?;
            } else {
                let udp_connect = UdpConnect::new(s.addr);
                let tcp_connect = TcpConnect::new(s.addr);
                let (conn, tran) =
                    dgram_stream::Connection::new(udp_connect, tcp_connect);
                // Start the run function on a separate task.
                fut_list_udp_tcp.push(tran.run());
                redun.add(Box::new(conn)).await?;
            }
        }

        tokio::spawn(async move {
            run(fut_list_tcp, fut_list_udp_tcp).await;
        });

        Ok(redun)
    }

    async fn get_transport(
        &self,
    ) -> Result<redundant::Connection<RequestMessage<Vec<u8>>>, Error> {
        let mut opt_transport = self.transport.lock().await;

        match &*opt_transport {
            Some(transport) => Ok(transport.clone()),
            None => {
                let transport = self.setup_transport().await?;
                *opt_transport = Some(transport.clone());
                Ok(transport)
            }
        }
    }
}

async fn run<TcpFut: Future, UdpTcpFut: Future>(
    mut fut_list_tcp: FuturesUnordered<TcpFut>,
    mut fut_list_udp_tcp: FuturesUnordered<UdpTcpFut>,
) {
    loop {
        let tcp_empty = fut_list_tcp.is_empty();
        let udp_tcp_empty = fut_list_udp_tcp.is_empty();
        if tcp_empty && udp_tcp_empty {
            break;
        }
        tokio::select! {
        _ = fut_list_tcp.next(), if !tcp_empty => {
            // Nothing to do
        }
        _ = fut_list_udp_tcp.next(), if !udp_tcp_empty => {
            // Nothing to do
        }
        }
    }
}

impl StubResolver {
    pub async fn lookup_addr(
        &self,
        addr: IpAddr,
    ) -> Result<FoundAddrs<&Self>, io::Error> {
        lookup_addr(&self, addr).await
    }

    pub async fn lookup_host(
        &self,
        qname: impl ToName,
    ) -> Result<FoundHosts<&Self>, io::Error> {
        lookup_host(&self, qname).await
    }

    pub async fn search_host(
        &self,
        qname: impl ToRelativeName,
    ) -> Result<FoundHosts<&Self>, io::Error> {
        search_host(&self, qname).await
    }

    /// Performs an SRV lookup using this resolver.
    ///
    /// See the documentation for the [`lookup_srv`] function for details.
    pub async fn lookup_srv(
        &self,
        service: impl ToRelativeName,
        name: impl ToName,
        fallback_port: u16,
    ) -> Result<Option<FoundSrvs>, SrvError> {
        lookup_srv(&self, service, name, fallback_port).await
    }
}

#[cfg(feature = "resolv-sync")]
#[cfg_attr(docsrs, doc(cfg(feature = "resolv-sync")))]
impl StubResolver {
    /// Synchronously perform a DNS operation atop a standard resolver.
    ///
    /// This associated functions removes almost all boiler plate for the
    /// case that you want to perform some DNS operation, either a query or
    /// lookup, on a resolver using the system’s configuration and wait for
    /// the result.
    ///
    /// The only argument is a closure taking a reference to a [`StubResolver`]
    /// and returning a future. Whatever that future resolves to will be
    /// returned.
    pub fn run<R, T, E, F>(op: F) -> R::Output
    where
        R: Future<Output = Result<T, E>> + Send + 'static,
        E: From<io::Error>,
        F: FnOnce(StubResolver) -> R + Send + 'static,
    {
        Self::run_with_conf(ResolvConf::default(), op)
    }

    /// Synchronously perform a DNS operation atop a configured resolver.
    ///
    /// This is like [`run`] but also takes a resolver configuration for
    /// tailor-making your own resolver.
    ///
    /// [`run`]: Self::run
    pub fn run_with_conf<R, T, E, F>(conf: ResolvConf, op: F) -> R::Output
    where
        R: Future<Output = Result<T, E>> + Send + 'static,
        E: From<io::Error>,
        F: FnOnce(StubResolver) -> R + Send + 'static,
    {
        let resolver = Self::from_conf(conf);
        let runtime = runtime::Builder::new_current_thread()
            .enable_all()
            .build()?;
        runtime.block_on(op(resolver))
    }
}

impl Default for StubResolver {
    fn default() -> Self {
        Self::new()
    }
}

impl<'a> Resolver for &'a StubResolver {
    type Octets = Bytes;
    type Answer = Answer;
    type Query =
        Pin<Box<dyn Future<Output = Result<Answer, io::Error>> + Send + 'a>>;

    fn query<N, Q>(&self, question: Q) -> Self::Query
    where
        N: ToName,
        Q: Into<Question<N>>,
    {
        let message = Query::create_message(question.into());
        Box::pin(self.query_message(message))
    }
}

impl<'a> SearchNames for &'a StubResolver {
    type Name = SearchSuffix;
    type Iter = SearchIter<'a>;

    fn search_iter(&self) -> Self::Iter {
        SearchIter {
            resolver: self,
            pos: 0,
        }
    }
}

//------------ Query ---------------------------------------------------------

pub struct Query<'a> {
    /// The resolver whose configuration we are using.
    resolver: &'a StubResolver,

    edns: Arc<AtomicBool>,

    /// The preferred error to return.
    ///
    /// Every time we finish a single query, we see if we can update this with
    /// a better one. If we finally have to fail, we return this result. This
    /// is a result so we can return a servfail answer if that is the only
    /// answer we get. (Remember, SERVFAIL is returned for a bogus answer, so
    /// you might want to know.)
    error: Result<Answer, io::Error>,
}

impl<'a> Query<'a> {
    pub fn new(resolver: &'a StubResolver) -> Result<Self, io::Error> {
        Ok(Query {
            resolver,
            edns: Arc::new(AtomicBool::new(true)),
            error: Err(io::Error::new(
                io::ErrorKind::TimedOut,
                "all timed out",
            )),
        })
    }

    pub async fn run(
        mut self,
        mut message: QueryMessage,
    ) -> Result<Answer, io::Error> {
        loop {
            match self.run_query(&mut message).await {
                Ok(answer) => {
                    if answer.header().rcode() == Rcode::FORMERR
                        && self.does_edns()
                    {
                        // FORMERR with EDNS: turn off EDNS and try again.
                        self.disable_edns();
                        continue;
                    } else if answer.header().rcode() == Rcode::SERVFAIL {
                        // SERVFAIL: go to next server.
                        self.update_error_servfail(answer);
                    } else {
                        // I guess we have an answer ...
                        return Ok(answer);
                    }
                }
                Err(err) => self.update_error(err),
            }
            return self.error;
        }
    }

    fn create_message(question: Question<impl ToName>) -> QueryMessage {
        let mut message = MessageBuilder::from_target(Default::default())
            .expect("MessageBuilder should not fail");
        message.header_mut().set_rd(true);
        let mut message = message.question();
        message.push(question).expect("push should not fail");
        message.additional()
    }

    async fn run_query(
        &mut self,
        message: &mut QueryMessage,
    ) -> Result<Answer, io::Error> {
        let msg = Message::from_octets(message.as_target().to_vec())
            .expect("Message::from_octets should not fail");

        let request_msg = RequestMessage::new(msg).map_err(|e| {
            io::Error::new(io::ErrorKind::Other, e.to_string())
        })?;

        let transport = self.resolver.get_transport().await.map_err(|e| {
            io::Error::new(io::ErrorKind::Other, e.to_string())
        })?;
        let mut gr_fut = transport.send_request(request_msg);
        let reply =
            timeout(self.resolver.options.timeout, gr_fut.get_response())
                .await?
                .map_err(|e| {
                    io::Error::new(io::ErrorKind::Other, e.to_string())
                })?;
        Ok(Answer { message: reply })
    }

    fn update_error(&mut self, err: io::Error) {
        // We keep the last error except for timeouts or if we have a servfail
        // answer already. Since we start with a timeout, we still get a that
        // if everything times out.
        if err.kind() != io::ErrorKind::TimedOut && self.error.is_err() {
            self.error = Err(err)
        }
    }

    fn update_error_servfail(&mut self, answer: Answer) {
        self.error = Ok(answer)
    }

    pub fn does_edns(&self) -> bool {
        self.edns.load(Ordering::Relaxed)
    }

    pub fn disable_edns(&self) {
        self.edns.store(false, Ordering::Relaxed);
    }
}

//------------ QueryMessage --------------------------------------------------

// XXX This needs to be re-evaluated if we start adding OPTions to the query.
pub(super) type QueryMessage = AdditionalBuilder<Array<512>>;

//------------ Answer --------------------------------------------------------

/// The answer to a question.
///
/// This type is a wrapper around the DNS [`Message`] containing the answer
/// that provides some additional information.
#[derive(Clone)]
pub struct Answer {
    message: Message<Bytes>,
}

impl Answer {
    /// Returns whether the answer is a final answer to be returned.
    pub fn is_final(&self) -> bool {
        (self.message.header().rcode() == Rcode::NOERROR
            || self.message.header().rcode() == Rcode::NXDOMAIN)
            && !self.message.header().tc()
    }

    /// Returns whether the answer is truncated.
    pub fn is_truncated(&self) -> bool {
        self.message.header().tc()
    }

    pub fn into_message(self) -> Message<Bytes> {
        self.message
    }
}

impl From<Message<Bytes>> for Answer {
    fn from(message: Message<Bytes>) -> Self {
        Answer { message }
    }
}

impl ops::Deref for Answer {
    type Target = Message<Bytes>;

    fn deref(&self) -> &Self::Target {
        &self.message
    }
}

impl AsRef<Message<Bytes>> for Answer {
    fn as_ref(&self) -> &Message<Bytes> {
        &self.message
    }
}

//------------ SearchIter ----------------------------------------------------

#[derive(Clone, Debug)]
pub struct SearchIter<'a> {
    resolver: &'a StubResolver,
    pos: usize,
}

impl<'a> Iterator for SearchIter<'a> {
    type Item = SearchSuffix;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(res) = self.resolver.options().search.get(self.pos) {
            self.pos += 1;
            Some(res.clone())
        } else {
            None
        }
    }
}