1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use crate::thread_parker::{ThreadParker, ThreadParkerT, UnparkHandleT};
use crate::util::UncheckedOptionExt;
use crate::word_lock::WordLock;
use core::{
cell::{Cell, UnsafeCell},
ptr,
sync::atomic::{AtomicPtr, AtomicUsize, Ordering},
};
use smallvec::SmallVec;
use std::time::{Duration, Instant};
// Don't use Instant on wasm32-unknown-unknown, it just panics.
cfg_if::cfg_if! {
if #[cfg(all(
target_family = "wasm",
target_os = "unknown",
target_vendor = "unknown"
))] {
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
struct TimeoutInstant;
impl TimeoutInstant {
fn now() -> TimeoutInstant {
TimeoutInstant
}
}
impl core::ops::Add<Duration> for TimeoutInstant {
type Output = Self;
fn add(self, _rhs: Duration) -> Self::Output {
TimeoutInstant
}
}
} else {
use std::time::Instant as TimeoutInstant;
}
}
static NUM_THREADS: AtomicUsize = AtomicUsize::new(0);
/// Holds the pointer to the currently active `HashTable`.
///
/// # Safety
///
/// Except for the initial value of null, it must always point to a valid `HashTable` instance.
/// Any `HashTable` this global static has ever pointed to must never be freed.
static HASHTABLE: AtomicPtr<HashTable> = AtomicPtr::new(ptr::null_mut());
// Even with 3x more buckets than threads, the memory overhead per thread is
// still only a few hundred bytes per thread.
const LOAD_FACTOR: usize = 3;
struct HashTable {
// Hash buckets for the table
entries: Box<[Bucket]>,
// Number of bits used for the hash function
hash_bits: u32,
// Previous table. This is only kept to keep leak detectors happy.
_prev: *const HashTable,
}
impl HashTable {
#[inline]
fn new(num_threads: usize, prev: *const HashTable) -> Box<HashTable> {
let new_size = (num_threads * LOAD_FACTOR).next_power_of_two();
let hash_bits = 0usize.leading_zeros() - new_size.leading_zeros() - 1;
let now = TimeoutInstant::now();
let mut entries = Vec::with_capacity(new_size);
for i in 0..new_size {
// We must ensure the seed is not zero
entries.push(Bucket::new(now, i as u32 + 1));
}
Box::new(HashTable {
entries: entries.into_boxed_slice(),
hash_bits,
_prev: prev,
})
}
}
#[repr(align(64))]
struct Bucket {
// Lock protecting the queue
mutex: WordLock,
// Linked list of threads waiting on this bucket
queue_head: Cell<*const ThreadData>,
queue_tail: Cell<*const ThreadData>,
// Next time at which point be_fair should be set
fair_timeout: UnsafeCell<FairTimeout>,
}
impl Bucket {
#[inline]
pub fn new(timeout: TimeoutInstant, seed: u32) -> Self {
Self {
mutex: WordLock::new(),
queue_head: Cell::new(ptr::null()),
queue_tail: Cell::new(ptr::null()),
fair_timeout: UnsafeCell::new(FairTimeout::new(timeout, seed)),
}
}
}
struct FairTimeout {
// Next time at which point be_fair should be set
timeout: TimeoutInstant,
// the PRNG state for calculating the next timeout
seed: u32,
}
impl FairTimeout {
#[inline]
fn new(timeout: TimeoutInstant, seed: u32) -> FairTimeout {
FairTimeout { timeout, seed }
}
// Determine whether we should force a fair unlock, and update the timeout
#[inline]
fn should_timeout(&mut self) -> bool {
let now = TimeoutInstant::now();
if now > self.timeout {
// Time between 0 and 1ms.
let nanos = self.gen_u32() % 1_000_000;
self.timeout = now + Duration::new(0, nanos);
true
} else {
false
}
}
// Pseudorandom number generator from the "Xorshift RNGs" paper by George Marsaglia.
fn gen_u32(&mut self) -> u32 {
self.seed ^= self.seed << 13;
self.seed ^= self.seed >> 17;
self.seed ^= self.seed << 5;
self.seed
}
}
struct ThreadData {
parker: ThreadParker,
// Key that this thread is sleeping on. This may change if the thread is
// requeued to a different key.
key: AtomicUsize,
// Linked list of parked threads in a bucket
next_in_queue: Cell<*const ThreadData>,
// UnparkToken passed to this thread when it is unparked
unpark_token: Cell<UnparkToken>,
// ParkToken value set by the thread when it was parked
park_token: Cell<ParkToken>,
// Is the thread parked with a timeout?
parked_with_timeout: Cell<bool>,
// Extra data for deadlock detection
#[cfg(feature = "deadlock_detection")]
deadlock_data: deadlock::DeadlockData,
}
impl ThreadData {
fn new() -> ThreadData {
// Keep track of the total number of live ThreadData objects and resize
// the hash table accordingly.
let num_threads = NUM_THREADS.fetch_add(1, Ordering::Relaxed) + 1;
grow_hashtable(num_threads);
ThreadData {
parker: ThreadParker::new(),
key: AtomicUsize::new(0),
next_in_queue: Cell::new(ptr::null()),
unpark_token: Cell::new(DEFAULT_UNPARK_TOKEN),
park_token: Cell::new(DEFAULT_PARK_TOKEN),
parked_with_timeout: Cell::new(false),
#[cfg(feature = "deadlock_detection")]
deadlock_data: deadlock::DeadlockData::new(),
}
}
}
// Invokes the given closure with a reference to the current thread `ThreadData`.
#[inline(always)]
fn with_thread_data<T>(f: impl FnOnce(&ThreadData) -> T) -> T {
// Unlike word_lock::ThreadData, parking_lot::ThreadData is always expensive
// to construct. Try to use a thread-local version if possible. Otherwise just
// create a ThreadData on the stack
let mut thread_data_storage = None;
thread_local!(static THREAD_DATA: ThreadData = ThreadData::new());
let thread_data_ptr = THREAD_DATA
.try_with(|x| x as *const ThreadData)
.unwrap_or_else(|_| thread_data_storage.get_or_insert_with(ThreadData::new));
f(unsafe { &*thread_data_ptr })
}
impl Drop for ThreadData {
fn drop(&mut self) {
NUM_THREADS.fetch_sub(1, Ordering::Relaxed);
}
}
/// Returns a reference to the latest hash table, creating one if it doesn't exist yet.
/// The reference is valid forever. However, the `HashTable` it references might become stale
/// at any point. Meaning it still exists, but it is not the instance in active use.
#[inline]
fn get_hashtable() -> &'static HashTable {
let table = HASHTABLE.load(Ordering::Acquire);
// If there is no table, create one
if table.is_null() {
create_hashtable()
} else {
// SAFETY: when not null, `HASHTABLE` always points to a `HashTable` that is never freed.
unsafe { &*table }
}
}
/// Returns a reference to the latest hash table, creating one if it doesn't exist yet.
/// The reference is valid forever. However, the `HashTable` it references might become stale
/// at any point. Meaning it still exists, but it is not the instance in active use.
#[cold]
fn create_hashtable() -> &'static HashTable {
let new_table = Box::into_raw(HashTable::new(LOAD_FACTOR, ptr::null()));
// If this fails then it means some other thread created the hash table first.
let table = match HASHTABLE.compare_exchange(
ptr::null_mut(),
new_table,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => new_table,
Err(old_table) => {
// Free the table we created
// SAFETY: `new_table` is created from `Box::into_raw` above and only freed here.
unsafe {
let _ = Box::from_raw(new_table);
}
old_table
}
};
// SAFETY: The `HashTable` behind `table` is never freed. It is either the table pointer we
// created here, or it is one loaded from `HASHTABLE`.
unsafe { &*table }
}
// Grow the hash table so that it is big enough for the given number of threads.
// This isn't performance-critical since it is only done when a ThreadData is
// created, which only happens once per thread.
fn grow_hashtable(num_threads: usize) {
// Lock all buckets in the existing table and get a reference to it
let old_table = loop {
let table = get_hashtable();
// Check if we need to resize the existing table
if table.entries.len() >= LOAD_FACTOR * num_threads {
return;
}
// Lock all buckets in the old table
for bucket in &table.entries[..] {
bucket.mutex.lock();
}
// Now check if our table is still the latest one. Another thread could
// have grown the hash table between us reading HASHTABLE and locking
// the buckets.
if HASHTABLE.load(Ordering::Relaxed) == table as *const _ as *mut _ {
break table;
}
// Unlock buckets and try again
for bucket in &table.entries[..] {
// SAFETY: We hold the lock here, as required
unsafe { bucket.mutex.unlock() };
}
};
// Create the new table
let mut new_table = HashTable::new(num_threads, old_table);
// Move the entries from the old table to the new one
for bucket in &old_table.entries[..] {
// SAFETY: The park, unpark* and check_wait_graph_fast functions create only correct linked
// lists. All `ThreadData` instances in these lists will remain valid as long as they are
// present in the lists, meaning as long as their threads are parked.
unsafe { rehash_bucket_into(bucket, &mut new_table) };
}
// Publish the new table. No races are possible at this point because
// any other thread trying to grow the hash table is blocked on the bucket
// locks in the old table.
HASHTABLE.store(Box::into_raw(new_table), Ordering::Release);
// Unlock all buckets in the old table
for bucket in &old_table.entries[..] {
// SAFETY: We hold the lock here, as required
unsafe { bucket.mutex.unlock() };
}
}
/// Iterate through all `ThreadData` objects in the bucket and insert them into the given table
/// in the bucket their key correspond to for this table.
///
/// # Safety
///
/// The given `bucket` must have a correctly constructed linked list under `queue_head`, containing
/// `ThreadData` instances that must stay valid at least as long as the given `table` is in use.
///
/// The given `table` must only contain buckets with correctly constructed linked lists.
unsafe fn rehash_bucket_into(bucket: &'static Bucket, table: &mut HashTable) {
let mut current: *const ThreadData = bucket.queue_head.get();
while !current.is_null() {
let next = (*current).next_in_queue.get();
let hash = hash((*current).key.load(Ordering::Relaxed), table.hash_bits);
if table.entries[hash].queue_tail.get().is_null() {
table.entries[hash].queue_head.set(current);
} else {
(*table.entries[hash].queue_tail.get())
.next_in_queue
.set(current);
}
table.entries[hash].queue_tail.set(current);
(*current).next_in_queue.set(ptr::null());
current = next;
}
}
// Hash function for addresses
#[cfg(target_pointer_width = "32")]
#[inline]
fn hash(key: usize, bits: u32) -> usize {
key.wrapping_mul(0x9E3779B9) >> (32 - bits)
}
#[cfg(target_pointer_width = "64")]
#[inline]
fn hash(key: usize, bits: u32) -> usize {
key.wrapping_mul(0x9E3779B97F4A7C15) >> (64 - bits)
}
/// Locks the bucket for the given key and returns a reference to it.
/// The returned bucket must be unlocked again in order to not cause deadlocks.
#[inline]
fn lock_bucket(key: usize) -> &'static Bucket {
loop {
let hashtable = get_hashtable();
let hash = hash(key, hashtable.hash_bits);
let bucket = &hashtable.entries[hash];
// Lock the bucket
bucket.mutex.lock();
// If no other thread has rehashed the table before we grabbed the lock
// then we are good to go! The lock we grabbed prevents any rehashes.
if HASHTABLE.load(Ordering::Relaxed) == hashtable as *const _ as *mut _ {
return bucket;
}
// Unlock the bucket and try again
// SAFETY: We hold the lock here, as required
unsafe { bucket.mutex.unlock() };
}
}
/// Locks the bucket for the given key and returns a reference to it. But checks that the key
/// hasn't been changed in the meantime due to a requeue.
/// The returned bucket must be unlocked again in order to not cause deadlocks.
#[inline]
fn lock_bucket_checked(key: &AtomicUsize) -> (usize, &'static Bucket) {
loop {
let hashtable = get_hashtable();
let current_key = key.load(Ordering::Relaxed);
let hash = hash(current_key, hashtable.hash_bits);
let bucket = &hashtable.entries[hash];
// Lock the bucket
bucket.mutex.lock();
// Check that both the hash table and key are correct while the bucket
// is locked. Note that the key can't change once we locked the proper
// bucket for it, so we just keep trying until we have the correct key.
if HASHTABLE.load(Ordering::Relaxed) == hashtable as *const _ as *mut _
&& key.load(Ordering::Relaxed) == current_key
{
return (current_key, bucket);
}
// Unlock the bucket and try again
// SAFETY: We hold the lock here, as required
unsafe { bucket.mutex.unlock() };
}
}
/// Locks the two buckets for the given pair of keys and returns references to them.
/// The returned buckets must be unlocked again in order to not cause deadlocks.
///
/// If both keys hash to the same value, both returned references will be to the same bucket. Be
/// careful to only unlock it once in this case, always use `unlock_bucket_pair`.
#[inline]
fn lock_bucket_pair(key1: usize, key2: usize) -> (&'static Bucket, &'static Bucket) {
loop {
let hashtable = get_hashtable();
let hash1 = hash(key1, hashtable.hash_bits);
let hash2 = hash(key2, hashtable.hash_bits);
// Get the bucket at the lowest hash/index first
let bucket1 = if hash1 <= hash2 {
&hashtable.entries[hash1]
} else {
&hashtable.entries[hash2]
};
// Lock the first bucket
bucket1.mutex.lock();
// If no other thread has rehashed the table before we grabbed the lock
// then we are good to go! The lock we grabbed prevents any rehashes.
if HASHTABLE.load(Ordering::Relaxed) == hashtable as *const _ as *mut _ {
// Now lock the second bucket and return the two buckets
if hash1 == hash2 {
return (bucket1, bucket1);
} else if hash1 < hash2 {
let bucket2 = &hashtable.entries[hash2];
bucket2.mutex.lock();
return (bucket1, bucket2);
} else {
let bucket2 = &hashtable.entries[hash1];
bucket2.mutex.lock();
return (bucket2, bucket1);
}
}
// Unlock the bucket and try again
// SAFETY: We hold the lock here, as required
unsafe { bucket1.mutex.unlock() };
}
}
/// Unlock a pair of buckets
///
/// # Safety
///
/// Both buckets must be locked
#[inline]
unsafe fn unlock_bucket_pair(bucket1: &Bucket, bucket2: &Bucket) {
bucket1.mutex.unlock();
if !ptr::eq(bucket1, bucket2) {
bucket2.mutex.unlock();
}
}
/// Result of a park operation.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum ParkResult {
/// We were unparked by another thread with the given token.
Unparked(UnparkToken),
/// The validation callback returned false.
Invalid,
/// The timeout expired.
TimedOut,
}
impl ParkResult {
/// Returns true if we were unparked by another thread.
#[inline]
pub fn is_unparked(self) -> bool {
if let ParkResult::Unparked(_) = self {
true
} else {
false
}
}
}
/// Result of an unpark operation.
#[derive(Copy, Clone, Default, Eq, PartialEq, Debug)]
pub struct UnparkResult {
/// The number of threads that were unparked.
pub unparked_threads: usize,
/// The number of threads that were requeued.
pub requeued_threads: usize,
/// Whether there are any threads remaining in the queue. This only returns
/// true if a thread was unparked.
pub have_more_threads: bool,
/// This is set to true on average once every 0.5ms for any given key. It
/// should be used to switch to a fair unlocking mechanism for a particular
/// unlock.
pub be_fair: bool,
/// Private field so new fields can be added without breakage.
_sealed: (),
}
/// Operation that `unpark_requeue` should perform.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum RequeueOp {
/// Abort the operation without doing anything.
Abort,
/// Unpark one thread and requeue the rest onto the target queue.
UnparkOneRequeueRest,
/// Requeue all threads onto the target queue.
RequeueAll,
/// Unpark one thread and leave the rest parked. No requeuing is done.
UnparkOne,
/// Requeue one thread and leave the rest parked on the original queue.
RequeueOne,
}
/// Operation that `unpark_filter` should perform for each thread.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum FilterOp {
/// Unpark the thread and continue scanning the list of parked threads.
Unpark,
/// Don't unpark the thread and continue scanning the list of parked threads.
Skip,
/// Don't unpark the thread and stop scanning the list of parked threads.
Stop,
}
/// A value which is passed from an unparker to a parked thread.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct UnparkToken(pub usize);
/// A value associated with a parked thread which can be used by `unpark_filter`.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct ParkToken(pub usize);
/// A default unpark token to use.
pub const DEFAULT_UNPARK_TOKEN: UnparkToken = UnparkToken(0);
/// A default park token to use.
pub const DEFAULT_PARK_TOKEN: ParkToken = ParkToken(0);
/// Parks the current thread in the queue associated with the given key.
///
/// The `validate` function is called while the queue is locked and can abort
/// the operation by returning false. If `validate` returns true then the
/// current thread is appended to the queue and the queue is unlocked.
///
/// The `before_sleep` function is called after the queue is unlocked but before
/// the thread is put to sleep. The thread will then sleep until it is unparked
/// or the given timeout is reached.
///
/// The `timed_out` function is also called while the queue is locked, but only
/// if the timeout was reached. It is passed the key of the queue it was in when
/// it timed out, which may be different from the original key if
/// `unpark_requeue` was called. It is also passed a bool which indicates
/// whether it was the last thread in the queue.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `validate` and `timed_out` functions are called while the queue is
/// locked and must not panic or call into any function in `parking_lot`.
///
/// The `before_sleep` function is called outside the queue lock and is allowed
/// to call `unpark_one`, `unpark_all`, `unpark_requeue` or `unpark_filter`, but
/// it is not allowed to call `park` or panic.
#[inline]
pub unsafe fn park(
key: usize,
validate: impl FnOnce() -> bool,
before_sleep: impl FnOnce(),
timed_out: impl FnOnce(usize, bool),
park_token: ParkToken,
timeout: Option<Instant>,
) -> ParkResult {
// Grab our thread data, this also ensures that the hash table exists
with_thread_data(|thread_data| {
// Lock the bucket for the given key
let bucket = lock_bucket(key);
// If the validation function fails, just return
if !validate() {
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
return ParkResult::Invalid;
}
// Append our thread data to the queue and unlock the bucket
thread_data.parked_with_timeout.set(timeout.is_some());
thread_data.next_in_queue.set(ptr::null());
thread_data.key.store(key, Ordering::Relaxed);
thread_data.park_token.set(park_token);
thread_data.parker.prepare_park();
if !bucket.queue_head.get().is_null() {
(*bucket.queue_tail.get()).next_in_queue.set(thread_data);
} else {
bucket.queue_head.set(thread_data);
}
bucket.queue_tail.set(thread_data);
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
// Invoke the pre-sleep callback
before_sleep();
// Park our thread and determine whether we were woken up by an unpark
// or by our timeout. Note that this isn't precise: we can still be
// unparked since we are still in the queue.
let unparked = match timeout {
Some(timeout) => thread_data.parker.park_until(timeout),
None => {
thread_data.parker.park();
// call deadlock detection on_unpark hook
deadlock::on_unpark(thread_data);
true
}
};
// If we were unparked, return now
if unparked {
return ParkResult::Unparked(thread_data.unpark_token.get());
}
// Lock our bucket again. Note that the hashtable may have been rehashed in
// the meantime. Our key may also have changed if we were requeued.
let (key, bucket) = lock_bucket_checked(&thread_data.key);
// Now we need to check again if we were unparked or timed out. Unlike the
// last check this is precise because we hold the bucket lock.
if !thread_data.parker.timed_out() {
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
return ParkResult::Unparked(thread_data.unpark_token.get());
}
// We timed out, so we now need to remove our thread from the queue
let mut link = &bucket.queue_head;
let mut current = bucket.queue_head.get();
let mut previous = ptr::null();
let mut was_last_thread = true;
while !current.is_null() {
if current == thread_data {
let next = (*current).next_in_queue.get();
link.set(next);
if bucket.queue_tail.get() == current {
bucket.queue_tail.set(previous);
} else {
// Scan the rest of the queue to see if there are any other
// entries with the given key.
let mut scan = next;
while !scan.is_null() {
if (*scan).key.load(Ordering::Relaxed) == key {
was_last_thread = false;
break;
}
scan = (*scan).next_in_queue.get();
}
}
// Callback to indicate that we timed out, and whether we were the
// last thread on the queue.
timed_out(key, was_last_thread);
break;
} else {
if (*current).key.load(Ordering::Relaxed) == key {
was_last_thread = false;
}
link = &(*current).next_in_queue;
previous = current;
current = link.get();
}
}
// There should be no way for our thread to have been removed from the queue
// if we timed out.
debug_assert!(!current.is_null());
// Unlock the bucket, we are done
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
ParkResult::TimedOut
})
}
/// Unparks one thread from the queue associated with the given key.
///
/// The `callback` function is called while the queue is locked and before the
/// target thread is woken up. The `UnparkResult` argument to the function
/// indicates whether a thread was found in the queue and whether this was the
/// last thread in the queue. This value is also returned by `unpark_one`.
///
/// The `callback` function should return an `UnparkToken` value which will be
/// passed to the thread that is unparked. If no thread is unparked then the
/// returned value is ignored.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `callback` function is called while the queue is locked and must not
/// panic or call into any function in `parking_lot`.
///
/// The `parking_lot` functions are not re-entrant and calling this method
/// from the context of an asynchronous signal handler may result in undefined
/// behavior, including corruption of internal state and/or deadlocks.
#[inline]
pub unsafe fn unpark_one(
key: usize,
callback: impl FnOnce(UnparkResult) -> UnparkToken,
) -> UnparkResult {
// Lock the bucket for the given key
let bucket = lock_bucket(key);
// Find a thread with a matching key and remove it from the queue
let mut link = &bucket.queue_head;
let mut current = bucket.queue_head.get();
let mut previous = ptr::null();
let mut result = UnparkResult::default();
while !current.is_null() {
if (*current).key.load(Ordering::Relaxed) == key {
// Remove the thread from the queue
let next = (*current).next_in_queue.get();
link.set(next);
if bucket.queue_tail.get() == current {
bucket.queue_tail.set(previous);
} else {
// Scan the rest of the queue to see if there are any other
// entries with the given key.
let mut scan = next;
while !scan.is_null() {
if (*scan).key.load(Ordering::Relaxed) == key {
result.have_more_threads = true;
break;
}
scan = (*scan).next_in_queue.get();
}
}
// Invoke the callback before waking up the thread
result.unparked_threads = 1;
result.be_fair = (*bucket.fair_timeout.get()).should_timeout();
let token = callback(result);
// Set the token for the target thread
(*current).unpark_token.set(token);
// This is a bit tricky: we first lock the ThreadParker to prevent
// the thread from exiting and freeing its ThreadData if its wait
// times out. Then we unlock the queue since we don't want to keep
// the queue locked while we perform a system call. Finally we wake
// up the parked thread.
let handle = (*current).parker.unpark_lock();
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
handle.unpark();
return result;
} else {
link = &(*current).next_in_queue;
previous = current;
current = link.get();
}
}
// No threads with a matching key were found in the bucket
callback(result);
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
result
}
/// Unparks all threads in the queue associated with the given key.
///
/// The given `UnparkToken` is passed to all unparked threads.
///
/// This function returns the number of threads that were unparked.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `parking_lot` functions are not re-entrant and calling this method
/// from the context of an asynchronous signal handler may result in undefined
/// behavior, including corruption of internal state and/or deadlocks.
#[inline]
pub unsafe fn unpark_all(key: usize, unpark_token: UnparkToken) -> usize {
// Lock the bucket for the given key
let bucket = lock_bucket(key);
// Remove all threads with the given key in the bucket
let mut link = &bucket.queue_head;
let mut current = bucket.queue_head.get();
let mut previous = ptr::null();
let mut threads = SmallVec::<[_; 8]>::new();
while !current.is_null() {
if (*current).key.load(Ordering::Relaxed) == key {
// Remove the thread from the queue
let next = (*current).next_in_queue.get();
link.set(next);
if bucket.queue_tail.get() == current {
bucket.queue_tail.set(previous);
}
// Set the token for the target thread
(*current).unpark_token.set(unpark_token);
// Don't wake up threads while holding the queue lock. See comment
// in unpark_one. For now just record which threads we need to wake
// up.
threads.push((*current).parker.unpark_lock());
current = next;
} else {
link = &(*current).next_in_queue;
previous = current;
current = link.get();
}
}
// Unlock the bucket
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
// Now that we are outside the lock, wake up all the threads that we removed
// from the queue.
let num_threads = threads.len();
for handle in threads.into_iter() {
handle.unpark();
}
num_threads
}
/// Removes all threads from the queue associated with `key_from`, optionally
/// unparks the first one and requeues the rest onto the queue associated with
/// `key_to`.
///
/// The `validate` function is called while both queues are locked. Its return
/// value will determine which operation is performed, or whether the operation
/// should be aborted. See `RequeueOp` for details about the different possible
/// return values.
///
/// The `callback` function is also called while both queues are locked. It is
/// passed the `RequeueOp` returned by `validate` and an `UnparkResult`
/// indicating whether a thread was unparked and whether there are threads still
/// parked in the new queue. This `UnparkResult` value is also returned by
/// `unpark_requeue`.
///
/// The `callback` function should return an `UnparkToken` value which will be
/// passed to the thread that is unparked. If no thread is unparked then the
/// returned value is ignored.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `validate` and `callback` functions are called while the queue is locked
/// and must not panic or call into any function in `parking_lot`.
#[inline]
pub unsafe fn unpark_requeue(
key_from: usize,
key_to: usize,
validate: impl FnOnce() -> RequeueOp,
callback: impl FnOnce(RequeueOp, UnparkResult) -> UnparkToken,
) -> UnparkResult {
// Lock the two buckets for the given key
let (bucket_from, bucket_to) = lock_bucket_pair(key_from, key_to);
// If the validation function fails, just return
let mut result = UnparkResult::default();
let op = validate();
if op == RequeueOp::Abort {
// SAFETY: Both buckets are locked, as required.
unlock_bucket_pair(bucket_from, bucket_to);
return result;
}
// Remove all threads with the given key in the source bucket
let mut link = &bucket_from.queue_head;
let mut current = bucket_from.queue_head.get();
let mut previous = ptr::null();
let mut requeue_threads: *const ThreadData = ptr::null();
let mut requeue_threads_tail: *const ThreadData = ptr::null();
let mut wakeup_thread = None;
while !current.is_null() {
if (*current).key.load(Ordering::Relaxed) == key_from {
// Remove the thread from the queue
let next = (*current).next_in_queue.get();
link.set(next);
if bucket_from.queue_tail.get() == current {
bucket_from.queue_tail.set(previous);
}
// Prepare the first thread for wakeup and requeue the rest.
if (op == RequeueOp::UnparkOneRequeueRest || op == RequeueOp::UnparkOne)
&& wakeup_thread.is_none()
{
wakeup_thread = Some(current);
result.unparked_threads = 1;
} else {
if !requeue_threads.is_null() {
(*requeue_threads_tail).next_in_queue.set(current);
} else {
requeue_threads = current;
}
requeue_threads_tail = current;
(*current).key.store(key_to, Ordering::Relaxed);
result.requeued_threads += 1;
}
if op == RequeueOp::UnparkOne || op == RequeueOp::RequeueOne {
// Scan the rest of the queue to see if there are any other
// entries with the given key.
let mut scan = next;
while !scan.is_null() {
if (*scan).key.load(Ordering::Relaxed) == key_from {
result.have_more_threads = true;
break;
}
scan = (*scan).next_in_queue.get();
}
break;
}
current = next;
} else {
link = &(*current).next_in_queue;
previous = current;
current = link.get();
}
}
// Add the requeued threads to the destination bucket
if !requeue_threads.is_null() {
(*requeue_threads_tail).next_in_queue.set(ptr::null());
if !bucket_to.queue_head.get().is_null() {
(*bucket_to.queue_tail.get())
.next_in_queue
.set(requeue_threads);
} else {
bucket_to.queue_head.set(requeue_threads);
}
bucket_to.queue_tail.set(requeue_threads_tail);
}
// Invoke the callback before waking up the thread
if result.unparked_threads != 0 {
result.be_fair = (*bucket_from.fair_timeout.get()).should_timeout();
}
let token = callback(op, result);
// See comment in unpark_one for why we mess with the locking
if let Some(wakeup_thread) = wakeup_thread {
(*wakeup_thread).unpark_token.set(token);
let handle = (*wakeup_thread).parker.unpark_lock();
// SAFETY: Both buckets are locked, as required.
unlock_bucket_pair(bucket_from, bucket_to);
handle.unpark();
} else {
// SAFETY: Both buckets are locked, as required.
unlock_bucket_pair(bucket_from, bucket_to);
}
result
}
/// Unparks a number of threads from the front of the queue associated with
/// `key` depending on the results of a filter function which inspects the
/// `ParkToken` associated with each thread.
///
/// The `filter` function is called for each thread in the queue or until
/// `FilterOp::Stop` is returned. This function is passed the `ParkToken`
/// associated with a particular thread, which is unparked if `FilterOp::Unpark`
/// is returned.
///
/// The `callback` function is also called while both queues are locked. It is
/// passed an `UnparkResult` indicating the number of threads that were unparked
/// and whether there are still parked threads in the queue. This `UnparkResult`
/// value is also returned by `unpark_filter`.
///
/// The `callback` function should return an `UnparkToken` value which will be
/// passed to all threads that are unparked. If no thread is unparked then the
/// returned value is ignored.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `filter` and `callback` functions are called while the queue is locked
/// and must not panic or call into any function in `parking_lot`.
#[inline]
pub unsafe fn unpark_filter(
key: usize,
mut filter: impl FnMut(ParkToken) -> FilterOp,
callback: impl FnOnce(UnparkResult) -> UnparkToken,
) -> UnparkResult {
// Lock the bucket for the given key
let bucket = lock_bucket(key);
// Go through the queue looking for threads with a matching key
let mut link = &bucket.queue_head;
let mut current = bucket.queue_head.get();
let mut previous = ptr::null();
let mut threads = SmallVec::<[_; 8]>::new();
let mut result = UnparkResult::default();
while !current.is_null() {
if (*current).key.load(Ordering::Relaxed) == key {
// Call the filter function with the thread's ParkToken
let next = (*current).next_in_queue.get();
match filter((*current).park_token.get()) {
FilterOp::Unpark => {
// Remove the thread from the queue
link.set(next);
if bucket.queue_tail.get() == current {
bucket.queue_tail.set(previous);
}
// Add the thread to our list of threads to unpark
threads.push((current, None));
current = next;
}
FilterOp::Skip => {
result.have_more_threads = true;
link = &(*current).next_in_queue;
previous = current;
current = link.get();
}
FilterOp::Stop => {
result.have_more_threads = true;
break;
}
}
} else {
link = &(*current).next_in_queue;
previous = current;
current = link.get();
}
}
// Invoke the callback before waking up the threads
result.unparked_threads = threads.len();
if result.unparked_threads != 0 {
result.be_fair = (*bucket.fair_timeout.get()).should_timeout();
}
let token = callback(result);
// Pass the token to all threads that are going to be unparked and prepare
// them for unparking.
for t in threads.iter_mut() {
(*t.0).unpark_token.set(token);
t.1 = Some((*t.0).parker.unpark_lock());
}
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
// Now that we are outside the lock, wake up all the threads that we removed
// from the queue.
for (_, handle) in threads.into_iter() {
handle.unchecked_unwrap().unpark();
}
result
}
/// \[Experimental\] Deadlock detection
///
/// Enabled via the `deadlock_detection` feature flag.
pub mod deadlock {
#[cfg(feature = "deadlock_detection")]
use super::deadlock_impl;
#[cfg(feature = "deadlock_detection")]
pub(super) use super::deadlock_impl::DeadlockData;
/// Acquire a resource identified by key in the deadlock detector
/// Noop if deadlock_detection feature isn't enabled.
///
/// # Safety
///
/// Call after the resource is acquired
#[inline]
pub unsafe fn acquire_resource(_key: usize) {
#[cfg(feature = "deadlock_detection")]
deadlock_impl::acquire_resource(_key);
}
/// Release a resource identified by key in the deadlock detector.
/// Noop if deadlock_detection feature isn't enabled.
///
/// # Panics
///
/// Panics if the resource was already released or wasn't acquired in this thread.
///
/// # Safety
///
/// Call before the resource is released
#[inline]
pub unsafe fn release_resource(_key: usize) {
#[cfg(feature = "deadlock_detection")]
deadlock_impl::release_resource(_key);
}
/// Returns all deadlocks detected *since* the last call.
/// Each cycle consist of a vector of `DeadlockedThread`.
#[cfg(feature = "deadlock_detection")]
#[inline]
pub fn check_deadlock() -> Vec<Vec<deadlock_impl::DeadlockedThread>> {
deadlock_impl::check_deadlock()
}
#[inline]
pub(super) unsafe fn on_unpark(_td: &super::ThreadData) {
#[cfg(feature = "deadlock_detection")]
deadlock_impl::on_unpark(_td);
}
}
#[cfg(feature = "deadlock_detection")]
mod deadlock_impl {
use super::{get_hashtable, lock_bucket, with_thread_data, ThreadData, NUM_THREADS};
use crate::thread_parker::{ThreadParkerT, UnparkHandleT};
use crate::word_lock::WordLock;
use backtrace::Backtrace;
use petgraph;
use petgraph::graphmap::DiGraphMap;
use std::cell::{Cell, UnsafeCell};
use std::collections::HashSet;
use std::sync::atomic::Ordering;
use std::sync::mpsc;
use thread_id;
/// Representation of a deadlocked thread
pub struct DeadlockedThread {
thread_id: usize,
backtrace: Backtrace,
}
impl DeadlockedThread {
/// The system thread id
pub fn thread_id(&self) -> usize {
self.thread_id
}
/// The thread backtrace
pub fn backtrace(&self) -> &Backtrace {
&self.backtrace
}
}
pub struct DeadlockData {
// Currently owned resources (keys)
resources: UnsafeCell<Vec<usize>>,
// Set when there's a pending callstack request
deadlocked: Cell<bool>,
// Sender used to report the backtrace
backtrace_sender: UnsafeCell<Option<mpsc::Sender<DeadlockedThread>>>,
// System thread id
thread_id: usize,
}
impl DeadlockData {
pub fn new() -> Self {
DeadlockData {
resources: UnsafeCell::new(Vec::new()),
deadlocked: Cell::new(false),
backtrace_sender: UnsafeCell::new(None),
thread_id: thread_id::get(),
}
}
}
pub(super) unsafe fn on_unpark(td: &ThreadData) {
if td.deadlock_data.deadlocked.get() {
let sender = (*td.deadlock_data.backtrace_sender.get()).take().unwrap();
sender
.send(DeadlockedThread {
thread_id: td.deadlock_data.thread_id,
backtrace: Backtrace::new(),
})
.unwrap();
// make sure to close this sender
drop(sender);
// park until the end of the time
td.parker.prepare_park();
td.parker.park();
unreachable!("unparked deadlocked thread!");
}
}
pub unsafe fn acquire_resource(key: usize) {
with_thread_data(|thread_data| {
(*thread_data.deadlock_data.resources.get()).push(key);
});
}
pub unsafe fn release_resource(key: usize) {
with_thread_data(|thread_data| {
let resources = &mut (*thread_data.deadlock_data.resources.get());
// There is only one situation where we can fail to find the
// resource: we are currently running TLS destructors and our
// ThreadData has already been freed. There isn't much we can do
// about it at this point, so just ignore it.
if let Some(p) = resources.iter().rposition(|x| *x == key) {
resources.swap_remove(p);
}
});
}
pub fn check_deadlock() -> Vec<Vec<DeadlockedThread>> {
unsafe {
// fast pass
if check_wait_graph_fast() {
// double check
check_wait_graph_slow()
} else {
Vec::new()
}
}
}
// Simple algorithm that builds a wait graph f the threads and the resources,
// then checks for the presence of cycles (deadlocks).
// This variant isn't precise as it doesn't lock the entire table before checking
unsafe fn check_wait_graph_fast() -> bool {
let table = get_hashtable();
let thread_count = NUM_THREADS.load(Ordering::Relaxed);
let mut graph = DiGraphMap::<usize, ()>::with_capacity(thread_count * 2, thread_count * 2);
for b in &(*table).entries[..] {
b.mutex.lock();
let mut current = b.queue_head.get();
while !current.is_null() {
if !(*current).parked_with_timeout.get()
&& !(*current).deadlock_data.deadlocked.get()
{
// .resources are waiting for their owner
for &resource in &(*(*current).deadlock_data.resources.get()) {
graph.add_edge(resource, current as usize, ());
}
// owner waits for resource .key
graph.add_edge(current as usize, (*current).key.load(Ordering::Relaxed), ());
}
current = (*current).next_in_queue.get();
}
// SAFETY: We hold the lock here, as required
b.mutex.unlock();
}
petgraph::algo::is_cyclic_directed(&graph)
}
#[derive(Hash, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
enum WaitGraphNode {
Thread(*const ThreadData),
Resource(usize),
}
use self::WaitGraphNode::*;
// Contrary to the _fast variant this locks the entries table before looking for cycles.
// Returns all detected thread wait cycles.
// Note that once a cycle is reported it's never reported again.
unsafe fn check_wait_graph_slow() -> Vec<Vec<DeadlockedThread>> {
static DEADLOCK_DETECTION_LOCK: WordLock = WordLock::new();
DEADLOCK_DETECTION_LOCK.lock();
let mut table = get_hashtable();
loop {
// Lock all buckets in the old table
for b in &table.entries[..] {
b.mutex.lock();
}
// Now check if our table is still the latest one. Another thread could
// have grown the hash table between us getting and locking the hash table.
let new_table = get_hashtable();
if new_table as *const _ == table as *const _ {
break;
}
// Unlock buckets and try again
for b in &table.entries[..] {
// SAFETY: We hold the lock here, as required
b.mutex.unlock();
}
table = new_table;
}
let thread_count = NUM_THREADS.load(Ordering::Relaxed);
let mut graph =
DiGraphMap::<WaitGraphNode, ()>::with_capacity(thread_count * 2, thread_count * 2);
for b in &table.entries[..] {
let mut current = b.queue_head.get();
while !current.is_null() {
if !(*current).parked_with_timeout.get()
&& !(*current).deadlock_data.deadlocked.get()
{
// .resources are waiting for their owner
for &resource in &(*(*current).deadlock_data.resources.get()) {
graph.add_edge(Resource(resource), Thread(current), ());
}
// owner waits for resource .key
graph.add_edge(
Thread(current),
Resource((*current).key.load(Ordering::Relaxed)),
(),
);
}
current = (*current).next_in_queue.get();
}
}
for b in &table.entries[..] {
// SAFETY: We hold the lock here, as required
b.mutex.unlock();
}
// find cycles
let cycles = graph_cycles(&graph);
let mut results = Vec::with_capacity(cycles.len());
for cycle in cycles {
let (sender, receiver) = mpsc::channel();
for td in cycle {
let bucket = lock_bucket((*td).key.load(Ordering::Relaxed));
(*td).deadlock_data.deadlocked.set(true);
*(*td).deadlock_data.backtrace_sender.get() = Some(sender.clone());
let handle = (*td).parker.unpark_lock();
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
// unpark the deadlocked thread!
// on unpark it'll notice the deadlocked flag and report back
handle.unpark();
}
// make sure to drop our sender before collecting results
drop(sender);
results.push(receiver.iter().collect());
}
DEADLOCK_DETECTION_LOCK.unlock();
results
}
// normalize a cycle to start with the "smallest" node
fn normalize_cycle<T: Ord + Copy + Clone>(input: &[T]) -> Vec<T> {
let min_pos = input
.iter()
.enumerate()
.min_by_key(|&(_, &t)| t)
.map(|(p, _)| p)
.unwrap_or(0);
input
.iter()
.cycle()
.skip(min_pos)
.take(input.len())
.cloned()
.collect()
}
// returns all thread cycles in the wait graph
fn graph_cycles(g: &DiGraphMap<WaitGraphNode, ()>) -> Vec<Vec<*const ThreadData>> {
use petgraph::visit::depth_first_search;
use petgraph::visit::DfsEvent;
use petgraph::visit::NodeIndexable;
let mut cycles = HashSet::new();
let mut path = Vec::with_capacity(g.node_bound());
// start from threads to get the correct threads cycle
let threads = g
.nodes()
.filter(|n| if let &Thread(_) = n { true } else { false });
depth_first_search(g, threads, |e| match e {
DfsEvent::Discover(Thread(n), _) => path.push(n),
DfsEvent::Finish(Thread(_), _) => {
path.pop();
}
DfsEvent::BackEdge(_, Thread(n)) => {
let from = path.iter().rposition(|&i| i == n).unwrap();
cycles.insert(normalize_cycle(&path[from..]));
}
_ => (),
});
cycles.iter().cloned().collect()
}
}
#[cfg(test)]
mod tests {
use super::{ThreadData, DEFAULT_PARK_TOKEN, DEFAULT_UNPARK_TOKEN};
use std::{
ptr,
sync::{
atomic::{AtomicIsize, AtomicPtr, AtomicUsize, Ordering},
Arc,
},
thread,
time::Duration,
};
/// Calls a closure for every `ThreadData` currently parked on a given key
fn for_each(key: usize, mut f: impl FnMut(&ThreadData)) {
let bucket = super::lock_bucket(key);
let mut current: *const ThreadData = bucket.queue_head.get();
while !current.is_null() {
let current_ref = unsafe { &*current };
if current_ref.key.load(Ordering::Relaxed) == key {
f(current_ref);
}
current = current_ref.next_in_queue.get();
}
// SAFETY: We hold the lock here, as required
unsafe { bucket.mutex.unlock() };
}
macro_rules! test {
( $( $name:ident(
repeats: $repeats:expr,
latches: $latches:expr,
delay: $delay:expr,
threads: $threads:expr,
single_unparks: $single_unparks:expr);
)* ) => {
$(#[test]
fn $name() {
let delay = Duration::from_micros($delay);
for _ in 0..$repeats {
run_parking_test($latches, delay, $threads, $single_unparks);
}
})*
};
}
test! {
unpark_all_one_fast(
repeats: 10000, latches: 1, delay: 0, threads: 1, single_unparks: 0
);
unpark_all_hundred_fast(
repeats: 100, latches: 1, delay: 0, threads: 100, single_unparks: 0
);
unpark_one_one_fast(
repeats: 1000, latches: 1, delay: 0, threads: 1, single_unparks: 1
);
unpark_one_hundred_fast(
repeats: 20, latches: 1, delay: 0, threads: 100, single_unparks: 100
);
unpark_one_fifty_then_fifty_all_fast(
repeats: 50, latches: 1, delay: 0, threads: 100, single_unparks: 50
);
unpark_all_one(
repeats: 100, latches: 1, delay: 10000, threads: 1, single_unparks: 0
);
unpark_all_hundred(
repeats: 100, latches: 1, delay: 10000, threads: 100, single_unparks: 0
);
unpark_one_one(
repeats: 10, latches: 1, delay: 10000, threads: 1, single_unparks: 1
);
unpark_one_fifty(
repeats: 1, latches: 1, delay: 10000, threads: 50, single_unparks: 50
);
unpark_one_fifty_then_fifty_all(
repeats: 2, latches: 1, delay: 10000, threads: 100, single_unparks: 50
);
hundred_unpark_all_one_fast(
repeats: 100, latches: 100, delay: 0, threads: 1, single_unparks: 0
);
hundred_unpark_all_one(
repeats: 1, latches: 100, delay: 10000, threads: 1, single_unparks: 0
);
}
fn run_parking_test(
num_latches: usize,
delay: Duration,
num_threads: usize,
num_single_unparks: usize,
) {
let mut tests = Vec::with_capacity(num_latches);
for _ in 0..num_latches {
let test = Arc::new(SingleLatchTest::new(num_threads));
let mut threads = Vec::with_capacity(num_threads);
for _ in 0..num_threads {
let test = test.clone();
threads.push(thread::spawn(move || test.run()));
}
tests.push((test, threads));
}
for unpark_index in 0..num_single_unparks {
thread::sleep(delay);
for (test, _) in &tests {
test.unpark_one(unpark_index);
}
}
for (test, threads) in tests {
test.finish(num_single_unparks);
for thread in threads {
thread.join().expect("Test thread panic");
}
}
}
struct SingleLatchTest {
semaphore: AtomicIsize,
num_awake: AtomicUsize,
/// Holds the pointer to the last *unprocessed* woken up thread.
last_awoken: AtomicPtr<ThreadData>,
/// Total number of threads participating in this test.
num_threads: usize,
}
impl SingleLatchTest {
pub fn new(num_threads: usize) -> Self {
Self {
// This implements a fair (FIFO) semaphore, and it starts out unavailable.
semaphore: AtomicIsize::new(0),
num_awake: AtomicUsize::new(0),
last_awoken: AtomicPtr::new(ptr::null_mut()),
num_threads,
}
}
pub fn run(&self) {
// Get one slot from the semaphore
self.down();
// Report back to the test verification code that this thread woke up
let this_thread_ptr = super::with_thread_data(|t| t as *const _ as *mut _);
self.last_awoken.store(this_thread_ptr, Ordering::SeqCst);
self.num_awake.fetch_add(1, Ordering::SeqCst);
}
pub fn unpark_one(&self, single_unpark_index: usize) {
// last_awoken should be null at all times except between self.up() and at the bottom
// of this method where it's reset to null again
assert!(self.last_awoken.load(Ordering::SeqCst).is_null());
let mut queue: Vec<*mut ThreadData> = Vec::with_capacity(self.num_threads);
for_each(self.semaphore_addr(), |thread_data| {
queue.push(thread_data as *const _ as *mut _);
});
assert!(queue.len() <= self.num_threads - single_unpark_index);
let num_awake_before_up = self.num_awake.load(Ordering::SeqCst);
self.up();
// Wait for a parked thread to wake up and update num_awake + last_awoken.
while self.num_awake.load(Ordering::SeqCst) != num_awake_before_up + 1 {
thread::yield_now();
}
// At this point the other thread should have set last_awoken inside the run() method
let last_awoken = self.last_awoken.load(Ordering::SeqCst);
assert!(!last_awoken.is_null());
if !queue.is_empty() && queue[0] != last_awoken {
panic!(
"Woke up wrong thread:\n\tqueue: {:?}\n\tlast awoken: {:?}",
queue, last_awoken
);
}
self.last_awoken.store(ptr::null_mut(), Ordering::SeqCst);
}
pub fn finish(&self, num_single_unparks: usize) {
// The amount of threads not unparked via unpark_one
let mut num_threads_left = self.num_threads.checked_sub(num_single_unparks).unwrap();
// Wake remaining threads up with unpark_all. Has to be in a loop, because there might
// still be threads that has not yet parked.
while num_threads_left > 0 {
let mut num_waiting_on_address = 0;
for_each(self.semaphore_addr(), |_thread_data| {
num_waiting_on_address += 1;
});
assert!(num_waiting_on_address <= num_threads_left);
let num_awake_before_unpark = self.num_awake.load(Ordering::SeqCst);
let num_unparked =
unsafe { super::unpark_all(self.semaphore_addr(), DEFAULT_UNPARK_TOKEN) };
assert!(num_unparked >= num_waiting_on_address);
assert!(num_unparked <= num_threads_left);
// Wait for all unparked threads to wake up and update num_awake + last_awoken.
while self.num_awake.load(Ordering::SeqCst)
!= num_awake_before_unpark + num_unparked
{
thread::yield_now()
}
num_threads_left = num_threads_left.checked_sub(num_unparked).unwrap();
}
// By now, all threads should have been woken up
assert_eq!(self.num_awake.load(Ordering::SeqCst), self.num_threads);
// Make sure no thread is parked on our semaphore address
let mut num_waiting_on_address = 0;
for_each(self.semaphore_addr(), |_thread_data| {
num_waiting_on_address += 1;
});
assert_eq!(num_waiting_on_address, 0);
}
pub fn down(&self) {
let old_semaphore_value = self.semaphore.fetch_sub(1, Ordering::SeqCst);
if old_semaphore_value > 0 {
// We acquired the semaphore. Done.
return;
}
// We need to wait.
let validate = || true;
let before_sleep = || {};
let timed_out = |_, _| {};
unsafe {
super::park(
self.semaphore_addr(),
validate,
before_sleep,
timed_out,
DEFAULT_PARK_TOKEN,
None,
);
}
}
pub fn up(&self) {
let old_semaphore_value = self.semaphore.fetch_add(1, Ordering::SeqCst);
// Check if anyone was waiting on the semaphore. If they were, then pass ownership to them.
if old_semaphore_value < 0 {
// We need to continue until we have actually unparked someone. It might be that
// the thread we want to pass ownership to has decremented the semaphore counter,
// but not yet parked.
loop {
match unsafe {
super::unpark_one(self.semaphore_addr(), |_| DEFAULT_UNPARK_TOKEN)
.unparked_threads
} {
1 => break,
0 => (),
i => panic!("Should not wake up {} threads", i),
}
}
}
}
fn semaphore_addr(&self) -> usize {
&self.semaphore as *const _ as usize
}
}
}