1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
// SPDX-License-Identifier: Apache-2.0 OR MIT
//! Implementation detail of the `pin-project` crate. - **do not use directly**
#![doc(test(
no_crate_inject,
attr(
deny(warnings, rust_2018_idioms, single_use_lifetimes),
allow(dead_code, unused_variables)
)
))]
#![forbid(unsafe_code)]
#![allow(clippy::needless_doctest_main)]
#[macro_use]
mod error;
#[macro_use]
mod utils;
mod pin_project;
mod pinned_drop;
use proc_macro::TokenStream;
/// An attribute that creates projection types covering all the fields of
/// struct or enum.
///
/// This attribute creates projection types according to the following rules:
///
/// - For the fields that use `#[pin]` attribute, create the pinned reference to
/// the field.
/// - For the other fields, create a normal reference to the field.
///
/// And the following methods are implemented on the original type:
///
/// ```
/// # use std::pin::Pin;
/// # type Projection<'a> = &'a ();
/// # type ProjectionRef<'a> = &'a ();
/// # trait Dox {
/// fn project(self: Pin<&mut Self>) -> Projection<'_>;
/// fn project_ref(self: Pin<&Self>) -> ProjectionRef<'_>;
/// # }
/// ```
///
/// By passing an argument with the same name as the method to the attribute,
/// you can name the projection type returned from the method. This allows you
/// to use pattern matching on the projected types.
///
/// ```
/// # use pin_project::pin_project;
/// # use std::pin::Pin;
/// #[pin_project(project = EnumProj)]
/// enum Enum<T> {
/// Variant(#[pin] T),
/// }
///
/// impl<T> Enum<T> {
/// fn method(self: Pin<&mut Self>) {
/// let this: EnumProj<'_, T> = self.project();
/// match this {
/// EnumProj::Variant(x) => {
/// let _: Pin<&mut T> = x;
/// }
/// }
/// }
/// }
/// ```
///
/// Note that the projection types returned by `project` and `project_ref` have
/// an additional lifetime at the beginning of generics.
///
/// ```text
/// let this: EnumProj<'_, T> = self.project();
/// ^^
/// ```
///
/// The visibility of the projected types and projection methods is based on the
/// original type. However, if the visibility of the original type is `pub`, the
/// visibility of the projected types and the projection methods is downgraded
/// to `pub(crate)`.
///
/// # Safety
///
/// This attribute is completely safe. In the absence of other `unsafe` code
/// *that you write*, it is impossible to cause [undefined
/// behavior][undefined-behavior] with this attribute.
///
/// This is accomplished by enforcing the four requirements for pin projection
/// stated in [the Rust documentation][pin-projection]:
///
/// 1. The struct must only be [`Unpin`] if all the structural fields are
/// [`Unpin`].
///
/// To enforce this, this attribute will automatically generate an [`Unpin`]
/// implementation for you, which will require that all structurally pinned
/// fields be [`Unpin`].
///
/// If you attempt to provide an [`Unpin`] impl, the blanket impl will then
/// apply to your type, causing a compile-time error due to the conflict with
/// the second impl.
///
/// If you wish to provide a manual [`Unpin`] impl, you can do so via the
/// [`UnsafeUnpin`][unsafe-unpin] argument.
///
/// 2. The destructor of the struct must not move structural fields out of its
/// argument.
///
/// To enforce this, this attribute will generate code like this:
///
/// ```
/// struct MyStruct {}
/// trait MyStructMustNotImplDrop {}
/// # #[allow(unknown_lints, drop_bounds)]
/// impl<T: Drop> MyStructMustNotImplDrop for T {}
/// impl MyStructMustNotImplDrop for MyStruct {}
/// ```
///
/// If you attempt to provide an [`Drop`] impl, the blanket impl will then
/// apply to your type, causing a compile-time error due to the conflict with
/// the second impl.
///
/// If you wish to provide a custom [`Drop`] impl, you can annotate an impl
/// with [`#[pinned_drop]`][pinned-drop]. This impl takes a pinned version of
/// your struct - that is, [`Pin`]`<&mut MyStruct>` where `MyStruct` is the
/// type of your struct.
///
/// You can call `.project()` on this type as usual, along with any other
/// methods you have defined. Because your code is never provided with
/// a `&mut MyStruct`, it is impossible to move out of pin-projectable
/// fields in safe code in your destructor.
///
/// 3. You must make sure that you uphold the [`Drop`
/// guarantee][drop-guarantee]: once your struct is pinned, the memory that
/// contains the content is not overwritten or deallocated without calling
/// the content's destructors.
///
/// Safe code doesn't need to worry about this - the only way to violate
/// this requirement is to manually deallocate memory (which is `unsafe`),
/// or to overwrite a field with something else.
/// Because your custom destructor takes [`Pin`]`<&mut MyStruct>`, it's
/// impossible to obtain a mutable reference to a pin-projected field in safe
/// code.
///
/// 4. You must not offer any other operations that could lead to data being
/// moved out of the structural fields when your type is pinned.
///
/// As with requirement 3, it is impossible for safe code to violate this.
/// This crate ensures that safe code can never obtain a mutable reference to
/// `#[pin]` fields, which prevents you from ever moving out of them in safe
/// code.
///
/// Pin projections are also incompatible with [`#[repr(packed)]`][repr-packed]
/// types. Attempting to use this attribute on a `#[repr(packed)]` type results
/// in a compile-time error.
///
/// # Examples
///
/// `#[pin_project]` can be used on structs and enums.
///
/// ```
/// use std::pin::Pin;
///
/// use pin_project::pin_project;
///
/// #[pin_project]
/// struct Struct<T, U> {
/// #[pin]
/// pinned: T,
/// unpinned: U,
/// }
///
/// impl<T, U> Struct<T, U> {
/// fn method(self: Pin<&mut Self>) {
/// let this = self.project();
/// let _: Pin<&mut T> = this.pinned;
/// let _: &mut U = this.unpinned;
/// }
/// }
/// ```
///
/// ```
/// use std::pin::Pin;
///
/// use pin_project::pin_project;
///
/// #[pin_project]
/// struct TupleStruct<T, U>(#[pin] T, U);
///
/// impl<T, U> TupleStruct<T, U> {
/// fn method(self: Pin<&mut Self>) {
/// let this = self.project();
/// let _: Pin<&mut T> = this.0;
/// let _: &mut U = this.1;
/// }
/// }
/// ```
///
/// To use `#[pin_project]` on enums, you need to name the projection type
/// returned from the method.
///
/// ```
/// use std::pin::Pin;
///
/// use pin_project::pin_project;
///
/// #[pin_project(project = EnumProj)]
/// enum Enum<T, U> {
/// Tuple(#[pin] T),
/// Struct { field: U },
/// Unit,
/// }
///
/// impl<T, U> Enum<T, U> {
/// fn method(self: Pin<&mut Self>) {
/// match self.project() {
/// EnumProj::Tuple(x) => {
/// let _: Pin<&mut T> = x;
/// }
/// EnumProj::Struct { field } => {
/// let _: &mut U = field;
/// }
/// EnumProj::Unit => {}
/// }
/// }
/// }
/// ```
///
/// When `#[pin_project]` is used on enums, only named projection types and
/// methods are generated because there is no way to access variants of
/// projected types without naming it.
/// For example, in the above example, only the `project` method is generated,
/// and the `project_ref` method is not generated.
/// (When `#[pin_project]` is used on structs, both methods are always generated.)
///
/// ```compile_fail,E0599
/// # use pin_project::pin_project;
/// # use std::pin::Pin;
/// #
/// # #[pin_project(project = EnumProj)]
/// # enum Enum<T, U> {
/// # Tuple(#[pin] T),
/// # Struct { field: U },
/// # Unit,
/// # }
/// #
/// impl<T, U> Enum<T, U> {
/// fn call_project_ref(self: Pin<&Self>) {
/// let _this = self.project_ref();
/// //~^ ERROR no method named `project_ref` found for struct `Pin<&Enum<T, U>>` in the current scope
/// }
/// }
/// ```
///
/// If you want to call `.project()` multiple times or later use the
/// original [`Pin`] type, it needs to use [`.as_mut()`][`Pin::as_mut`] to avoid
/// consuming the [`Pin`].
///
/// ```
/// use std::pin::Pin;
///
/// use pin_project::pin_project;
///
/// #[pin_project]
/// struct Struct<T> {
/// #[pin]
/// field: T,
/// }
///
/// impl<T> Struct<T> {
/// fn call_project_twice(mut self: Pin<&mut Self>) {
/// // `project` consumes `self`, so reborrow the `Pin<&mut Self>` via `as_mut`.
/// self.as_mut().project();
/// self.as_mut().project();
/// }
/// }
/// ```
///
/// # `!Unpin`
///
/// If you want to ensure that [`Unpin`] is not implemented, use the `!Unpin`
/// argument to `#[pin_project]`.
///
/// ```
/// use pin_project::pin_project;
///
/// #[pin_project(!Unpin)]
/// struct Struct<T> {
/// field: T,
/// }
/// ```
///
/// This is equivalent to using `#[pin]` attribute for the [`PhantomPinned`]
/// field.
///
/// ```
/// use std::marker::PhantomPinned;
///
/// use pin_project::pin_project;
///
/// #[pin_project]
/// struct Struct<T> {
/// field: T,
/// #[pin] // <------ This `#[pin]` is required to make `Struct` to `!Unpin`.
/// _pin: PhantomPinned,
/// }
/// ```
///
/// Note that using [`PhantomPinned`] without `#[pin]` attribute has no effect.
///
/// # `UnsafeUnpin`
///
/// If you want to implement [`Unpin`] manually, you must use the `UnsafeUnpin`
/// argument to `#[pin_project]`.
///
/// ```
/// use pin_project::{pin_project, UnsafeUnpin};
///
/// #[pin_project(UnsafeUnpin)]
/// struct Struct<T, U> {
/// #[pin]
/// pinned: T,
/// unpinned: U,
/// }
///
/// unsafe impl<T: Unpin, U> UnsafeUnpin for Struct<T, U> {}
/// ```
///
/// Note the usage of the unsafe [`UnsafeUnpin`] trait, instead of the usual
/// [`Unpin`] trait. [`UnsafeUnpin`] behaves exactly like [`Unpin`], except that
/// is unsafe to implement. This unsafety comes from the fact that pin
/// projections are being used. If you implement [`UnsafeUnpin`], you must
/// ensure that it is only implemented when all pin-projected fields implement
/// [`Unpin`].
///
/// See [`UnsafeUnpin`] trait for more details.
///
/// # `#[pinned_drop]`
///
/// In order to correctly implement pin projections, a type's [`Drop`] impl must
/// not move out of any structurally pinned fields. Unfortunately,
/// [`Drop::drop`] takes `&mut Self`, not [`Pin`]`<&mut Self>`.
///
/// To ensure that this requirement is upheld, the `#[pin_project]` attribute
/// will provide a [`Drop`] impl for you. This [`Drop`] impl will delegate to
/// an impl block annotated with `#[pinned_drop]` if you use the `PinnedDrop`
/// argument to `#[pin_project]`.
///
/// This impl block acts just like a normal [`Drop`] impl,
/// except for the following two:
///
/// - `drop` method takes [`Pin`]`<&mut Self>`
/// - Name of the trait is `PinnedDrop`.
///
/// ```
/// # use std::pin::Pin;
/// pub trait PinnedDrop {
/// fn drop(self: Pin<&mut Self>);
/// }
/// ```
///
/// `#[pin_project]` implements the actual [`Drop`] trait via `PinnedDrop` you
/// implemented. To drop a type that implements `PinnedDrop`, use the [`drop`]
/// function just like dropping a type that directly implements [`Drop`].
///
/// In particular, it will never be called more than once, just like
/// [`Drop::drop`].
///
/// For example:
///
/// ```
/// use std::{fmt::Debug, pin::Pin};
///
/// use pin_project::{pin_project, pinned_drop};
///
/// #[pin_project(PinnedDrop)]
/// struct PrintOnDrop<T: Debug, U: Debug> {
/// #[pin]
/// pinned_field: T,
/// unpin_field: U,
/// }
///
/// #[pinned_drop]
/// impl<T: Debug, U: Debug> PinnedDrop for PrintOnDrop<T, U> {
/// fn drop(self: Pin<&mut Self>) {
/// println!("Dropping pinned field: {:?}", self.pinned_field);
/// println!("Dropping unpin field: {:?}", self.unpin_field);
/// }
/// }
///
/// fn main() {
/// let _x = PrintOnDrop { pinned_field: true, unpin_field: 40 };
/// }
/// ```
///
/// See also [`#[pinned_drop]`][macro@pinned_drop] attribute.
///
/// # `project_replace` method
///
/// In addition to the `project` and `project_ref` methods which are always
/// provided when you use the `#[pin_project]` attribute, there is a third
/// method, `project_replace` which can be useful in some situations. It is
/// equivalent to [`Pin::set`], except that the unpinned fields are moved and
/// returned, instead of being dropped in-place.
///
/// ```
/// # use std::pin::Pin;
/// # type ProjectionOwned = ();
/// # trait Dox {
/// fn project_replace(self: Pin<&mut Self>, other: Self) -> ProjectionOwned;
/// # }
/// ```
///
/// The `ProjectionOwned` type is identical to the `Self` type, except that
/// all pinned fields have been replaced by equivalent [`PhantomData`] types.
///
/// This method is opt-in, because it is only supported for [`Sized`] types, and
/// because it is incompatible with the [`#[pinned_drop]`][pinned-drop]
/// attribute described above. It can be enabled by using
/// `#[pin_project(project_replace)]`.
///
/// For example:
///
/// ```
/// use std::{marker::PhantomData, pin::Pin};
///
/// use pin_project::pin_project;
///
/// #[pin_project(project_replace)]
/// struct Struct<T, U> {
/// #[pin]
/// pinned_field: T,
/// unpinned_field: U,
/// }
///
/// impl<T, U> Struct<T, U> {
/// fn method(self: Pin<&mut Self>, other: Self) {
/// let this = self.project_replace(other);
/// let _: U = this.unpinned_field;
/// let _: PhantomData<T> = this.pinned_field;
/// }
/// }
/// ```
///
/// By passing the value to the `project_replace` argument, you can name the
/// returned type of the `project_replace` method. This is necessary whenever
/// destructuring the return type of the `project_replace` method, and work in exactly
/// the same way as the `project` and `project_ref` arguments.
///
/// ```
/// use pin_project::pin_project;
///
/// #[pin_project(project_replace = EnumProjOwn)]
/// enum Enum<T, U> {
/// A {
/// #[pin]
/// pinned_field: T,
/// unpinned_field: U,
/// },
/// B,
/// }
///
/// let mut x = Box::pin(Enum::A { pinned_field: 42, unpinned_field: "hello" });
///
/// match x.as_mut().project_replace(Enum::B) {
/// EnumProjOwn::A { unpinned_field, .. } => assert_eq!(unpinned_field, "hello"),
/// EnumProjOwn::B => unreachable!(),
/// }
/// ```
///
/// [`PhantomData`]: core::marker::PhantomData
/// [`PhantomPinned`]: core::marker::PhantomPinned
/// [`Pin::as_mut`]: core::pin::Pin::as_mut
/// [`Pin::set`]: core::pin::Pin::set
/// [`Pin`]: core::pin::Pin
/// [`UnsafeUnpin`]: https://docs.rs/pin-project/1/pin_project/trait.UnsafeUnpin.html
/// [drop-guarantee]: core::pin#drop-guarantee
/// [pin-projection]: core::pin#projections-and-structural-pinning
/// [pinned-drop]: macro@pin_project#pinned_drop
/// [repr-packed]: https://doc.rust-lang.org/nomicon/other-reprs.html#reprpacked
/// [undefined-behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
/// [unsafe-unpin]: macro@pin_project#unsafeunpin
#[proc_macro_attribute]
pub fn pin_project(args: TokenStream, input: TokenStream) -> TokenStream {
pin_project::attribute(&args.into(), input.into()).into()
}
/// An attribute used for custom implementations of [`Drop`].
///
/// This attribute is used in conjunction with the `PinnedDrop` argument to
/// the [`#[pin_project]`][macro@pin_project] attribute.
///
/// The impl block annotated with this attribute acts just like a normal
/// [`Drop`] impl, except for the following two:
///
/// - `drop` method takes [`Pin`]`<&mut Self>`
/// - Name of the trait is `PinnedDrop`.
///
/// ```
/// # use std::pin::Pin;
/// pub trait PinnedDrop {
/// fn drop(self: Pin<&mut Self>);
/// }
/// ```
///
/// `#[pin_project]` implements the actual [`Drop`] trait via `PinnedDrop` you
/// implemented. To drop a type that implements `PinnedDrop`, use the [`drop`]
/// function just like dropping a type that directly implements [`Drop`].
///
/// In particular, it will never be called more than once, just like
/// [`Drop::drop`].
///
/// # Examples
///
/// ```
/// use std::pin::Pin;
///
/// use pin_project::{pin_project, pinned_drop};
///
/// #[pin_project(PinnedDrop)]
/// struct PrintOnDrop {
/// #[pin]
/// field: u8,
/// }
///
/// #[pinned_drop]
/// impl PinnedDrop for PrintOnDrop {
/// fn drop(self: Pin<&mut Self>) {
/// println!("Dropping: {}", self.field);
/// }
/// }
///
/// fn main() {
/// let _x = PrintOnDrop { field: 50 };
/// }
/// ```
///
/// See also ["pinned-drop" section of `#[pin_project]` attribute][pinned-drop].
///
/// # Why `#[pinned_drop]` attribute is needed?
///
/// Implementing `PinnedDrop::drop` is safe, but calling it is not safe.
/// This is because destructors can be called multiple times in safe code and
/// [double dropping is unsound][rust-lang/rust#62360].
///
/// Ideally, it would be desirable to be able to forbid manual calls in
/// the same way as [`Drop::drop`], but the library cannot do it. So, by using
/// macros and replacing them with private traits like the following,
/// this crate prevent users from calling `PinnedDrop::drop` in safe code.
///
/// ```
/// # use std::pin::Pin;
/// pub trait PinnedDrop {
/// unsafe fn drop(self: Pin<&mut Self>);
/// }
/// ```
///
/// This allows implementing [`Drop`] safely using `#[pinned_drop]`.
/// Also by using the [`drop`] function just like dropping a type that directly
/// implements [`Drop`], can drop safely a type that implements `PinnedDrop`.
///
/// [rust-lang/rust#62360]: https://github.com/rust-lang/rust/pull/62360
/// [`Pin`]: core::pin::Pin
/// [pinned-drop]: macro@pin_project#pinned_drop
#[proc_macro_attribute]
pub fn pinned_drop(args: TokenStream, input: TokenStream) -> TokenStream {
let input = syn::parse_macro_input!(input);
pinned_drop::attribute(&args.into(), input).into()
}
// Not public API.
#[doc(hidden)]
#[proc_macro_derive(__PinProjectInternalDerive, attributes(pin))]
pub fn __pin_project_internal_derive(input: TokenStream) -> TokenStream {
pin_project::derive(input.into()).into()
}