ring/agreement.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
// Copyright 2015-2017 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//! Key Agreement: ECDH, including X25519.
//!
//! # Example
//!
//! Note that this example uses X25519, but ECDH using NIST P-256/P-384 is done
//! exactly the same way, just substituting
//! `agreement::ECDH_P256`/`agreement::ECDH_P384` for `agreement::X25519`.
//!
//! ```
//! use ring::{agreement, rand};
//!
//! let rng = rand::SystemRandom::new();
//!
//! let my_private_key = agreement::EphemeralPrivateKey::generate(&agreement::X25519, &rng)?;
//!
//! // Make `my_public_key` a byte slice containing my public key. In a real
//! // application, this would be sent to the peer in an encoded protocol
//! // message.
//! let my_public_key = my_private_key.compute_public_key()?;
//!
//! let peer_public_key = {
//! // In a real application, the peer public key would be parsed out of a
//! // protocol message. Here we just generate one.
//! let peer_public_key = {
//! let peer_private_key =
//! agreement::EphemeralPrivateKey::generate(&agreement::X25519, &rng)?;
//! peer_private_key.compute_public_key()?
//! };
//!
//! agreement::UnparsedPublicKey::new(&agreement::X25519, peer_public_key)
//! };
//!
//! agreement::agree_ephemeral(
//! my_private_key,
//! &peer_public_key,
//! |_key_material| {
//! // In a real application, we'd apply a KDF to the key material and the
//! // public keys (as recommended in RFC 7748) and then derive session
//! // keys from the result. We omit all that here.
//! },
//! )?;
//!
//! # Ok::<(), ring::error::Unspecified>(())
//! ```
// The "NSA Guide" steps here are from from section 3.1, "Ephemeral Unified
// Model."
use crate::{cpu, debug, ec, error, rand};
pub use crate::ec::{
curve25519::x25519::X25519,
suite_b::ecdh::{ECDH_P256, ECDH_P384},
};
/// A key agreement algorithm.
pub struct Algorithm {
pub(crate) curve: &'static ec::Curve,
pub(crate) ecdh: fn(
out: &mut [u8],
private_key: &ec::Seed,
peer_public_key: untrusted::Input,
) -> Result<(), error::Unspecified>,
}
derive_debug_via_field!(Algorithm, curve);
impl Eq for Algorithm {}
impl PartialEq for Algorithm {
fn eq(&self, other: &Self) -> bool {
self.curve.id == other.curve.id
}
}
/// An ephemeral private key for use (only) with `agree_ephemeral`. The
/// signature of `agree_ephemeral` ensures that an `EphemeralPrivateKey` can be
/// used for at most one key agreement.
pub struct EphemeralPrivateKey {
private_key: ec::Seed,
algorithm: &'static Algorithm,
}
derive_debug_via_field!(
EphemeralPrivateKey,
stringify!(EphemeralPrivateKey),
algorithm
);
impl EphemeralPrivateKey {
/// Generate a new ephemeral private key for the given algorithm.
pub fn generate(
alg: &'static Algorithm,
rng: &dyn rand::SecureRandom,
) -> Result<Self, error::Unspecified> {
let cpu_features = cpu::features();
// NSA Guide Step 1.
//
// This only handles the key generation part of step 1. The rest of
// step one is done by `compute_public_key()`.
let private_key = ec::Seed::generate(alg.curve, rng, cpu_features)?;
Ok(Self {
private_key,
algorithm: alg,
})
}
/// Computes the public key from the private key.
#[inline(always)]
pub fn compute_public_key(&self) -> Result<PublicKey, error::Unspecified> {
// NSA Guide Step 1.
//
// Obviously, this only handles the part of Step 1 between the private
// key generation and the sending of the public key to the peer. `out`
// is what should be sent to the peer.
self.private_key
.compute_public_key()
.map(|public_key| PublicKey {
algorithm: self.algorithm,
bytes: public_key,
})
}
/// The algorithm for the private key.
#[inline]
pub fn algorithm(&self) -> &'static Algorithm {
self.algorithm
}
#[cfg(test)]
pub fn bytes(&self) -> &[u8] {
self.private_key.bytes_less_safe()
}
}
/// A public key for key agreement.
#[derive(Clone)]
pub struct PublicKey {
algorithm: &'static Algorithm,
bytes: ec::PublicKey,
}
impl AsRef<[u8]> for PublicKey {
fn as_ref(&self) -> &[u8] {
self.bytes.as_ref()
}
}
impl core::fmt::Debug for PublicKey {
fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
f.debug_struct("PublicKey")
.field("algorithm", &self.algorithm)
.field("bytes", &debug::HexStr(self.as_ref()))
.finish()
}
}
impl PublicKey {
/// The algorithm for the public key.
#[inline]
pub fn algorithm(&self) -> &'static Algorithm {
self.algorithm
}
}
/// An unparsed, possibly malformed, public key for key agreement.
#[derive(Clone, Copy)]
pub struct UnparsedPublicKey<B> {
algorithm: &'static Algorithm,
bytes: B,
}
impl<B> AsRef<[u8]> for UnparsedPublicKey<B>
where
B: AsRef<[u8]>,
{
fn as_ref(&self) -> &[u8] {
self.bytes.as_ref()
}
}
impl<B: core::fmt::Debug> core::fmt::Debug for UnparsedPublicKey<B>
where
B: AsRef<[u8]>,
{
fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
f.debug_struct("UnparsedPublicKey")
.field("algorithm", &self.algorithm)
.field("bytes", &debug::HexStr(self.bytes.as_ref()))
.finish()
}
}
impl<B> UnparsedPublicKey<B> {
/// Constructs a new `UnparsedPublicKey`.
pub fn new(algorithm: &'static Algorithm, bytes: B) -> Self {
Self { algorithm, bytes }
}
/// The algorithm for the public key.
#[inline]
pub fn algorithm(&self) -> &'static Algorithm {
self.algorithm
}
/// TODO: doc
#[inline]
pub fn bytes(&self) -> &B {
&self.bytes
}
}
/// Performs a key agreement with an ephemeral private key and the given public
/// key.
///
/// `my_private_key` is the ephemeral private key to use. Since it is moved, it
/// will not be usable after calling `agree_ephemeral`, thus guaranteeing that
/// the key is used for only one key agreement.
///
/// `peer_public_key` is the peer's public key. `agree_ephemeral` will return
/// `Err(error_value)` if it does not match `my_private_key's` algorithm/curve.
/// `agree_ephemeral` verifies that it is encoded in the standard form for the
/// algorithm and that the key is *valid*; see the algorithm's documentation for
/// details on how keys are to be encoded and what constitutes a valid key for
/// that algorithm.
///
/// After the key agreement is done, `agree_ephemeral` calls `kdf` with the raw
/// key material from the key agreement operation and then returns what `kdf`
/// returns.
#[inline]
pub fn agree_ephemeral<B: AsRef<[u8]>, R>(
my_private_key: EphemeralPrivateKey,
peer_public_key: &UnparsedPublicKey<B>,
kdf: impl FnOnce(&[u8]) -> R,
) -> Result<R, error::Unspecified> {
let peer_public_key = UnparsedPublicKey {
algorithm: peer_public_key.algorithm,
bytes: peer_public_key.bytes.as_ref(),
};
agree_ephemeral_(my_private_key, peer_public_key, kdf)
}
fn agree_ephemeral_<R>(
my_private_key: EphemeralPrivateKey,
peer_public_key: UnparsedPublicKey<&[u8]>,
kdf: impl FnOnce(&[u8]) -> R,
) -> Result<R, error::Unspecified> {
// NSA Guide Prerequisite 1.
//
// The domain parameters are hard-coded. This check verifies that the
// peer's public key's domain parameters match the domain parameters of
// this private key.
if peer_public_key.algorithm != my_private_key.algorithm {
return Err(error::Unspecified);
}
let alg = &my_private_key.algorithm;
// NSA Guide Prerequisite 2, regarding which KDFs are allowed, is delegated
// to the caller.
// NSA Guide Prerequisite 3, "Prior to or during the key-agreement process,
// each party shall obtain the identifier associated with the other party
// during the key-agreement scheme," is delegated to the caller.
// NSA Guide Step 1 is handled by `EphemeralPrivateKey::generate()` and
// `EphemeralPrivateKey::compute_public_key()`.
let mut shared_key = [0u8; ec::ELEM_MAX_BYTES];
let shared_key = &mut shared_key[..alg.curve.elem_scalar_seed_len];
// NSA Guide Steps 2, 3, and 4.
//
// We have a pretty liberal interpretation of the NIST's spec's "Destroy"
// that doesn't meet the NSA requirement to "zeroize."
(alg.ecdh)(
shared_key,
&my_private_key.private_key,
untrusted::Input::from(peer_public_key.bytes),
)?;
// NSA Guide Steps 5 and 6.
//
// Again, we have a pretty liberal interpretation of the NIST's spec's
// "Destroy" that doesn't meet the NSA requirement to "zeroize."
Ok(kdf(shared_key))
}