1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! Cryptographic pseudo-random number generation.
//!
//! *ring* functions that generate random bytes take a `&dyn SecureRandom`
//! parameter to make it clear which functions are non-deterministic.

use crate::error;

/// A secure random number generator.
pub trait SecureRandom: sealed::SecureRandom {
    /// Fills `dest` with random bytes.
    fn fill(&self, dest: &mut [u8]) -> Result<(), error::Unspecified>;
}

impl<T> SecureRandom for T
where
    T: sealed::SecureRandom,
{
    #[inline(always)]
    fn fill(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> {
        self.fill_impl(dest)
    }
}

/// A random value constructed from a `SecureRandom` that hasn't been exposed
/// through any safe Rust interface.
///
/// Intentionally does not implement any traits other than `Sized`.
pub struct Random<T: RandomlyConstructable>(T);

impl<T: RandomlyConstructable> Random<T> {
    /// Expose the random value.
    #[inline]
    pub fn expose(self) -> T {
        self.0
    }
}

/// Generate the new random value using `rng`.
#[inline]
pub fn generate<T: RandomlyConstructable>(
    rng: &dyn SecureRandom,
) -> Result<Random<T>, error::Unspecified>
where
    T: RandomlyConstructable,
{
    let mut r = T::zero();
    rng.fill(r.as_mut_bytes())?;
    Ok(Random(r))
}

pub(crate) mod sealed {
    use crate::error;

    pub trait SecureRandom: core::fmt::Debug {
        /// Fills `dest` with random bytes.
        fn fill_impl(&self, dest: &mut [u8]) -> Result<(), error::Unspecified>;
    }

    pub trait RandomlyConstructable: Sized {
        fn zero() -> Self; // `Default::default()`
        fn as_mut_bytes(&mut self) -> &mut [u8]; // `AsMut<[u8]>::as_mut`
    }

    impl<const N: usize> RandomlyConstructable for [u8; N] {
        #[inline]
        fn zero() -> Self {
            [0; N]
        }

        #[inline]
        fn as_mut_bytes(&mut self) -> &mut [u8] {
            &mut self[..]
        }
    }
}

/// A type that can be returned by `ring::rand::generate()`.
pub trait RandomlyConstructable: self::sealed::RandomlyConstructable {}
impl<T> RandomlyConstructable for T where T: self::sealed::RandomlyConstructable {}

/// A secure random number generator where the random values come directly
/// from the operating system.
///
/// "Directly from the operating system" here presently means "whatever the
/// `getrandom` crate does" but that may change in the future. That roughly
/// means calling libc's `getrandom` function or whatever is analogous to that;
/// see the `getrandom` crate's documentation for more info.
///
/// A single `SystemRandom` may be shared across multiple threads safely.
///
/// `new()` is guaranteed to always succeed and to have low latency; it won't
/// try to open or read from a file or do similar things. The first call to
/// `fill()` may block a substantial amount of time since any and all
/// initialization is deferred to it. Therefore, it may be a good idea to call
/// `fill()` once at a non-latency-sensitive time to minimize latency for
/// future calls.
#[derive(Clone, Debug)]
pub struct SystemRandom(());

impl SystemRandom {
    /// Constructs a new `SystemRandom`.
    #[inline(always)]
    pub fn new() -> Self {
        Self(())
    }
}

impl crate::sealed::Sealed for SystemRandom {}

// Use the `getrandom` crate whenever it is using the environment's (operating
// system's) CSPRNG. Avoid using it on targets where it uses the `rdrand`
// implementation.
#[cfg(any(
    target_os = "android",
    target_os = "dragonfly",
    target_os = "freebsd",
    target_os = "haiku",
    target_os = "hermit",
    target_os = "illumos",
    target_os = "ios",
    target_os = "linux",
    target_os = "macos",
    target_os = "netbsd",
    target_os = "openbsd",
    target_os = "redox",
    target_os = "solaris",
    target_os = "tvos",
    target_os = "vita",
    target_os = "windows",
    all(
        target_arch = "wasm32",
        any(
            target_os = "wasi",
            all(target_os = "unknown", feature = "wasm32_unknown_unknown_js")
        )
    ),
))]
impl sealed::SecureRandom for SystemRandom {
    #[inline(always)]
    fn fill_impl(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> {
        getrandom::getrandom(dest).map_err(|_| error::Unspecified)
    }
}