ring/rsa/keypair.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
use super::{
padding::RsaEncoding, KeyPairComponents, PublicExponent, PublicKey, PublicKeyComponents, N,
};
/// RSA PKCS#1 1.5 signatures.
use crate::{
arithmetic::{
bigint::{self, Prime},
montgomery::R,
},
bits, cpu, digest,
error::{self, KeyRejected},
io::der,
pkcs8, rand, signature,
};
/// An RSA key pair, used for signing.
pub struct KeyPair {
p: PrivatePrime<P>,
q: PrivatePrime<Q>,
qInv: bigint::Elem<P, R>,
qq: bigint::Modulus<QQ>,
q_mod_n: bigint::Elem<N, R>,
public: PublicKey,
}
derive_debug_via_field!(KeyPair, stringify!(RsaKeyPair), public);
impl KeyPair {
/// Parses an unencrypted PKCS#8-encoded RSA private key.
///
/// This will generate a 2048-bit RSA private key of the correct form using
/// OpenSSL's command line tool:
///
/// ```sh
/// openssl genpkey -algorithm RSA \
/// -pkeyopt rsa_keygen_bits:2048 \
/// -pkeyopt rsa_keygen_pubexp:65537 | \
/// openssl pkcs8 -topk8 -nocrypt -outform der > rsa-2048-private-key.pk8
/// ```
///
/// This will generate a 3072-bit RSA private key of the correct form:
///
/// ```sh
/// openssl genpkey -algorithm RSA \
/// -pkeyopt rsa_keygen_bits:3072 \
/// -pkeyopt rsa_keygen_pubexp:65537 | \
/// openssl pkcs8 -topk8 -nocrypt -outform der > rsa-3072-private-key.pk8
/// ```
///
/// Often, keys generated for use in OpenSSL-based software are stored in
/// the Base64 “PEM” format without the PKCS#8 wrapper. Such keys can be
/// converted to binary PKCS#8 form using the OpenSSL command line tool like
/// this:
///
/// ```sh
/// openssl pkcs8 -topk8 -nocrypt -outform der \
/// -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8
/// ```
///
/// Base64 (“PEM”) PKCS#8-encoded keys can be converted to the binary PKCS#8
/// form like this:
///
/// ```sh
/// openssl pkcs8 -nocrypt -outform der \
/// -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8
/// ```
///
/// See [`Self::from_components`] for more details on how the input is
/// validated.
///
/// See [RFC 5958] and [RFC 3447 Appendix A.1.2] for more details of the
/// encoding of the key.
///
/// [NIST SP-800-56B rev. 1]:
/// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
///
/// [RFC 3447 Appendix A.1.2]:
/// https://tools.ietf.org/html/rfc3447#appendix-A.1.2
///
/// [RFC 5958]:
/// https://tools.ietf.org/html/rfc5958
pub fn from_pkcs8(pkcs8: &[u8]) -> Result<Self, KeyRejected> {
const RSA_ENCRYPTION: &[u8] = include_bytes!("../data/alg-rsa-encryption.der");
let (der, _) = pkcs8::unwrap_key_(
untrusted::Input::from(RSA_ENCRYPTION),
pkcs8::Version::V1Only,
untrusted::Input::from(pkcs8),
)?;
Self::from_der(der.as_slice_less_safe())
}
/// Parses an RSA private key that is not inside a PKCS#8 wrapper.
///
/// The private key must be encoded as a binary DER-encoded ASN.1
/// `RSAPrivateKey` as described in [RFC 3447 Appendix A.1.2]). In all other
/// respects, this is just like `from_pkcs8()`. See the documentation for
/// `from_pkcs8()` for more details.
///
/// It is recommended to use `from_pkcs8()` (with a PKCS#8-encoded key)
/// instead.
///
/// See [`Self::from_components()`] for more details on how the input is
/// validated.
///
/// [RFC 3447 Appendix A.1.2]:
/// https://tools.ietf.org/html/rfc3447#appendix-A.1.2
///
/// [NIST SP-800-56B rev. 1]:
/// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
pub fn from_der(input: &[u8]) -> Result<Self, KeyRejected> {
untrusted::Input::from(input).read_all(KeyRejected::invalid_encoding(), |input| {
der::nested(
input,
der::Tag::Sequence,
error::KeyRejected::invalid_encoding(),
Self::from_der_reader,
)
})
}
fn from_der_reader(input: &mut untrusted::Reader) -> Result<Self, KeyRejected> {
let version = der::small_nonnegative_integer(input)
.map_err(|error::Unspecified| KeyRejected::invalid_encoding())?;
if version != 0 {
return Err(KeyRejected::version_not_supported());
}
fn nonnegative_integer<'a>(
input: &mut untrusted::Reader<'a>,
) -> Result<&'a [u8], KeyRejected> {
der::nonnegative_integer(input)
.map(|input| input.as_slice_less_safe())
.map_err(|error::Unspecified| KeyRejected::invalid_encoding())
}
let n = nonnegative_integer(input)?;
let e = nonnegative_integer(input)?;
let d = nonnegative_integer(input)?;
let p = nonnegative_integer(input)?;
let q = nonnegative_integer(input)?;
let dP = nonnegative_integer(input)?;
let dQ = nonnegative_integer(input)?;
let qInv = nonnegative_integer(input)?;
let components = KeyPairComponents {
public_key: PublicKeyComponents { n, e },
d,
p,
q,
dP,
dQ,
qInv,
};
Self::from_components(&components)
}
/// Constructs an RSA private key from its big-endian-encoded components.
///
/// Only two-prime (not multi-prime) keys are supported. The public modulus
/// (n) must be at least 2047 bits. The public modulus must be no larger
/// than 4096 bits. It is recommended that the public modulus be exactly
/// 2048 or 3072 bits. The public exponent must be at least 65537 and must
/// be no more than 33 bits long.
///
/// The private key is validated according to [NIST SP-800-56B rev. 1]
/// section 6.4.1.4.3, crt_pkv (Intended Exponent-Creation Method Unknown),
/// with the following exceptions:
///
/// * Section 6.4.1.2.1, Step 1: Neither a target security level nor an
/// expected modulus length is provided as a parameter, so checks
/// regarding these expectations are not done.
/// * Section 6.4.1.2.1, Step 3: Since neither the public key nor the
/// expected modulus length is provided as a parameter, the consistency
/// check between these values and the private key's value of n isn't
/// done.
/// * Section 6.4.1.2.1, Step 5: No primality tests are done, both for
/// performance reasons and to avoid any side channels that such tests
/// would provide.
/// * Section 6.4.1.2.1, Step 6, and 6.4.1.4.3, Step 7:
/// * *ring* has a slightly looser lower bound for the values of `p`
/// and `q` than what the NIST document specifies. This looser lower
/// bound matches what most other crypto libraries do. The check might
/// be tightened to meet NIST's requirements in the future. Similarly,
/// the check that `p` and `q` are not too close together is skipped
/// currently, but may be added in the future.
/// - The validity of the mathematical relationship of `dP`, `dQ`, `e`
/// and `n` is verified only during signing. Some size checks of `d`,
/// `dP` and `dQ` are performed at construction, but some NIST checks
/// are skipped because they would be expensive and/or they would leak
/// information through side channels. If a preemptive check of the
/// consistency of `dP`, `dQ`, `e` and `n` with each other is
/// necessary, that can be done by signing any message with the key
/// pair.
///
/// * `d` is not fully validated, neither at construction nor during
/// signing. This is OK as far as *ring*'s usage of the key is
/// concerned because *ring* never uses the value of `d` (*ring* always
/// uses `p`, `q`, `dP` and `dQ` via the Chinese Remainder Theorem,
/// instead). However, *ring*'s checks would not be sufficient for
/// validating a key pair for use by some other system; that other
/// system must check the value of `d` itself if `d` is to be used.
pub fn from_components<Public, Private>(
components: &KeyPairComponents<Public, Private>,
) -> Result<Self, KeyRejected>
where
Public: AsRef<[u8]>,
Private: AsRef<[u8]>,
{
let components = KeyPairComponents {
public_key: PublicKeyComponents {
n: components.public_key.n.as_ref(),
e: components.public_key.e.as_ref(),
},
d: components.d.as_ref(),
p: components.p.as_ref(),
q: components.q.as_ref(),
dP: components.dP.as_ref(),
dQ: components.dQ.as_ref(),
qInv: components.qInv.as_ref(),
};
Self::from_components_(&components, cpu::features())
}
fn from_components_(
&KeyPairComponents {
public_key,
d,
p,
q,
dP,
dQ,
qInv,
}: &KeyPairComponents<&[u8]>,
cpu_features: cpu::Features,
) -> Result<Self, KeyRejected> {
let d = untrusted::Input::from(d);
let p = untrusted::Input::from(p);
let q = untrusted::Input::from(q);
let dP = untrusted::Input::from(dP);
let dQ = untrusted::Input::from(dQ);
let qInv = untrusted::Input::from(qInv);
let (p, p_bits) = bigint::Nonnegative::from_be_bytes_with_bit_length(p)
.map_err(|error::Unspecified| KeyRejected::invalid_encoding())?;
let (q, q_bits) = bigint::Nonnegative::from_be_bytes_with_bit_length(q)
.map_err(|error::Unspecified| KeyRejected::invalid_encoding())?;
// Our implementation of CRT-based modular exponentiation used requires
// that `p > q` so swap them if `p < q`. If swapped, `qInv` is
// recalculated below. `p != q` is verified implicitly below, e.g. when
// `q_mod_p` is constructed.
let ((p, p_bits, dP), (q, q_bits, dQ, qInv)) = match q.verify_less_than(&p) {
Ok(_) => ((p, p_bits, dP), (q, q_bits, dQ, Some(qInv))),
Err(error::Unspecified) => {
// TODO: verify `q` and `qInv` are inverses (mod p).
((q, q_bits, dQ), (p, p_bits, dP, None))
}
};
// XXX: Some steps are done out of order, but the NIST steps are worded
// in such a way that it is clear that NIST intends for them to be done
// in order. TODO: Does this matter at all?
// 6.4.1.4.3/6.4.1.2.1 - Step 1.
// Step 1.a is omitted, as explained above.
// Step 1.b is omitted per above. Instead, we check that the public
// modulus is 2048 to `PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS` bits.
// XXX: The maximum limit of 4096 bits is primarily due to lack of
// testing of larger key sizes; see, in particular,
// https://www.mail-archive.com/openssl-dev@openssl.org/msg44586.html
// and
// https://www.mail-archive.com/openssl-dev@openssl.org/msg44759.html.
// Also, this limit might help with memory management decisions later.
// Step 1.c. We validate e >= 65537.
let n = untrusted::Input::from(public_key.n);
let e = untrusted::Input::from(public_key.e);
let public_key = PublicKey::from_modulus_and_exponent(
n,
e,
bits::BitLength::from_usize_bits(2048),
super::PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS,
PublicExponent::_65537,
cpu_features,
)?;
let n = public_key.n().value();
// 6.4.1.4.3 says to skip 6.4.1.2.1 Step 2.
// 6.4.1.4.3 Step 3.
// Step 3.a is done below, out of order.
// Step 3.b is unneeded since `n_bits` is derived here from `n`.
// 6.4.1.4.3 says to skip 6.4.1.2.1 Step 4. (We don't need to recover
// the prime factors since they are already given.)
// 6.4.1.4.3 - Step 5.
// Steps 5.a and 5.b are omitted, as explained above.
// Step 5.c.
//
// TODO: First, stop if `p < (√2) * 2**((nBits/2) - 1)`.
//
// Second, stop if `p > 2**(nBits/2) - 1`.
let half_n_bits = public_key.n().len_bits().half_rounded_up();
if p_bits != half_n_bits {
return Err(KeyRejected::inconsistent_components());
}
// TODO: Step 5.d: Verify GCD(p - 1, e) == 1.
// Steps 5.e and 5.f are omitted as explained above.
// Step 5.g.
//
// TODO: First, stop if `q < (√2) * 2**((nBits/2) - 1)`.
//
// Second, stop if `q > 2**(nBits/2) - 1`.
if p_bits != q_bits {
return Err(KeyRejected::inconsistent_components());
}
// TODO: Step 5.h: Verify GCD(p - 1, e) == 1.
let q_mod_n_decoded = q
.to_elem(n)
.map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
// TODO: Step 5.i
//
// 3.b is unneeded since `n_bits` is derived here from `n`.
// 6.4.1.4.3 - Step 3.a (out of order).
//
// Verify that p * q == n. We restrict ourselves to modular
// multiplication. We rely on the fact that we've verified
// 0 < q < p < n. We check that q and p are close to sqrt(n) and then
// assume that these preconditions are enough to let us assume that
// checking p * q == 0 (mod n) is equivalent to checking p * q == n.
let q_mod_n = bigint::elem_mul(n.oneRR().as_ref(), q_mod_n_decoded.clone(), n);
let p_mod_n = p
.to_elem(n)
.map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
let pq_mod_n = bigint::elem_mul(&q_mod_n, p_mod_n, n);
if !pq_mod_n.is_zero() {
return Err(KeyRejected::inconsistent_components());
}
// 6.4.1.4.3/6.4.1.2.1 - Step 6.
// Step 6.a, partial.
//
// First, validate `2**half_n_bits < d`. Since 2**half_n_bits has a bit
// length of half_n_bits + 1, this check gives us 2**half_n_bits <= d,
// and knowing d is odd makes the inequality strict.
let (d, d_bits) = bigint::Nonnegative::from_be_bytes_with_bit_length(d)
.map_err(|_| error::KeyRejected::invalid_encoding())?;
if !(half_n_bits < d_bits) {
return Err(KeyRejected::inconsistent_components());
}
// XXX: This check should be `d < LCM(p - 1, q - 1)`, but we don't have
// a good way of calculating LCM, so it is omitted, as explained above.
d.verify_less_than_modulus(n)
.map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
if !d.is_odd() {
return Err(KeyRejected::invalid_component());
}
// Step 6.b is omitted as explained above.
// 6.4.1.4.3 - Step 7.
// Step 7.a.
let p = PrivatePrime::new(p, dP, cpu_features)?;
// Step 7.b.
let q = PrivatePrime::new(q, dQ, cpu_features)?;
let q_mod_p = q.modulus.to_elem(&p.modulus);
// Step 7.c.
let qInv = if let Some(qInv) = qInv {
bigint::Elem::from_be_bytes_padded(qInv, &p.modulus)
.map_err(|error::Unspecified| KeyRejected::invalid_component())?
} else {
// We swapped `p` and `q` above, so we need to calculate `qInv`.
// Step 7.f below will verify `qInv` is correct.
let q_mod_p = bigint::elem_mul(p.modulus.oneRR().as_ref(), q_mod_p.clone(), &p.modulus);
bigint::elem_inverse_consttime(q_mod_p, &p.modulus)
.map_err(|error::Unspecified| KeyRejected::unexpected_error())?
};
// Steps 7.d and 7.e are omitted per the documentation above, and
// because we don't (in the long term) have a good way to do modulo
// with an even modulus.
// Step 7.f.
let qInv = bigint::elem_mul(p.modulus.oneRR().as_ref(), qInv, &p.modulus);
bigint::verify_inverses_consttime(&qInv, q_mod_p, &p.modulus)
.map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
let qq = bigint::Modulus::from_elem(
bigint::elem_mul(&q_mod_n, q_mod_n_decoded, n),
cpu_features,
)?;
// This should never fail since `n` and `e` were validated above.
Ok(Self {
p,
q,
qInv,
q_mod_n,
qq,
public: public_key,
})
}
/// Returns a reference to the public key.
pub fn public(&self) -> &PublicKey {
&self.public
}
/// Returns the length in bytes of the key pair's public modulus.
///
/// A signature has the same length as the public modulus.
#[deprecated = "Use `public().modulus_len()`"]
#[inline]
pub fn public_modulus_len(&self) -> usize {
self.public().modulus_len()
}
}
impl signature::KeyPair for KeyPair {
type PublicKey = PublicKey;
fn public_key(&self) -> &Self::PublicKey {
self.public()
}
}
struct PrivatePrime<M: Prime> {
modulus: bigint::Modulus<M>,
exponent: bigint::PrivateExponent,
}
impl<M: Prime> PrivatePrime<M> {
/// Constructs a `PrivatePrime` from the private prime `p` and `dP` where
/// dP == d % (p - 1).
fn new(
p: bigint::Nonnegative,
dP: untrusted::Input,
cpu_features: cpu::Features,
) -> Result<Self, KeyRejected> {
let (p, p_bits) = bigint::Modulus::from_nonnegative_with_bit_length(p, cpu_features)?;
if p_bits.as_usize_bits() % 512 != 0 {
return Err(error::KeyRejected::private_modulus_len_not_multiple_of_512_bits());
}
// [NIST SP-800-56B rev. 1] 6.4.1.4.3 - Steps 7.a & 7.b.
let dP = bigint::PrivateExponent::from_be_bytes_padded(dP, &p)
.map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
// XXX: Steps 7.d and 7.e are omitted. We don't check that
// `dP == d % (p - 1)` because we don't (in the long term) have a good
// way to do modulo with an even modulus. Instead we just check that
// `1 <= dP < p - 1`. We'll check it, to some unknown extent, when we
// do the private key operation, since we verify that the result of the
// private key operation using the CRT parameters is consistent with `n`
// and `e`. TODO: Either prove that what we do is sufficient, or make
// it so.
Ok(Self {
modulus: p,
exponent: dP,
})
}
}
fn elem_exp_consttime<M, MM>(
c: &bigint::Elem<MM>,
p: &PrivatePrime<M>,
) -> Result<bigint::Elem<M>, error::Unspecified>
where
M: bigint::NotMuchSmallerModulus<MM>,
M: Prime,
{
let c_mod_m = bigint::elem_reduced(c, &p.modulus);
// We could precompute `oneRRR = elem_squared(&p.oneRR`) as mentioned
// in the Smooth CRT-RSA paper.
let c_mod_m = bigint::elem_mul(p.modulus.oneRR().as_ref(), c_mod_m, &p.modulus);
let c_mod_m = bigint::elem_mul(p.modulus.oneRR().as_ref(), c_mod_m, &p.modulus);
bigint::elem_exp_consttime(c_mod_m, &p.exponent, &p.modulus)
}
// Type-level representations of the different moduli used in RSA signing, in
// addition to `super::N`. See `super::bigint`'s modulue-level documentation.
#[derive(Copy, Clone)]
enum P {}
unsafe impl Prime for P {}
unsafe impl bigint::SmallerModulus<N> for P {}
unsafe impl bigint::NotMuchSmallerModulus<N> for P {}
#[derive(Copy, Clone)]
enum QQ {}
unsafe impl bigint::SmallerModulus<N> for QQ {}
unsafe impl bigint::NotMuchSmallerModulus<N> for QQ {}
// `q < p < 2*q` since `q` is slightly smaller than `p` (see below). Thus:
//
// q < p < 2*q
// q*q < p*q < 2*q*q.
// q**2 < n < 2*(q**2).
unsafe impl bigint::SlightlySmallerModulus<N> for QQ {}
#[derive(Copy, Clone)]
enum Q {}
unsafe impl Prime for Q {}
unsafe impl bigint::SmallerModulus<N> for Q {}
unsafe impl bigint::SmallerModulus<P> for Q {}
// q < p && `p.bit_length() == q.bit_length()` implies `q < p < 2*q`.
unsafe impl bigint::SlightlySmallerModulus<P> for Q {}
unsafe impl bigint::SmallerModulus<QQ> for Q {}
unsafe impl bigint::NotMuchSmallerModulus<QQ> for Q {}
impl KeyPair {
/// Computes the signature of `msg` and writes it into `signature`.
///
/// `msg` is digested using the digest algorithm from `padding_alg` and the
/// digest is then padded using the padding algorithm from `padding_alg`.
///
/// The signature it written into `signature`; `signature`'s length must be
/// exactly the length returned by `self::public().modulus_len()` or else
/// an error will be returned. On failure, `signature` may contain
/// intermediate results, but won't contain anything that would endanger the
/// private key.
///
/// `rng` may be used to randomize the padding (e.g. for PSS).
///
/// Many other crypto libraries have signing functions that takes a
/// precomputed digest as input, instead of the message to digest. This
/// function does *not* take a precomputed digest; instead, `sign`
/// calculates the digest itself.
pub fn sign(
&self,
padding_alg: &'static dyn RsaEncoding,
rng: &dyn rand::SecureRandom,
msg: &[u8],
signature: &mut [u8],
) -> Result<(), error::Unspecified> {
if signature.len() != self.public().modulus_len() {
return Err(error::Unspecified);
}
let m_hash = digest::digest(padding_alg.digest_alg(), msg);
// Use the output buffer as the scratch space for the signature to
// reduce the required stack space.
padding_alg.encode(m_hash, signature, self.public().n().len_bits(), rng)?;
// RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem
// with Garner's algorithm.
// Steps 1 and 2.
let m = self.private_exponentiate(signature)?;
// Step 3.
m.fill_be_bytes(signature);
Ok(())
}
/// Returns base**d (mod n).
///
/// This does not return or write any intermediate results into any buffers
/// that are provided by the caller so that no intermediate state will be
/// leaked that would endanger the private key.
///
/// Panics if `in_out` is not `self.public().modulus_len()`.
fn private_exponentiate(&self, base: &[u8]) -> Result<bigint::Elem<N>, error::Unspecified> {
assert_eq!(base.len(), self.public().modulus_len());
// RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem
// with Garner's algorithm.
let n = self.public.n().value();
// Step 1. The value zero is also rejected.
let base = bigint::Elem::from_be_bytes_padded(untrusted::Input::from(base), n)?;
// Step 2
let c = base;
// Step 2.b.i.
let m_1 = elem_exp_consttime(&c, &self.p)?;
let c_mod_qq = bigint::elem_reduced_once(&c, &self.qq);
let m_2 = elem_exp_consttime(&c_mod_qq, &self.q)?;
// Step 2.b.ii isn't needed since there are only two primes.
// Step 2.b.iii.
let p = &self.p.modulus;
let m_2 = bigint::elem_widen(m_2, p);
let m_1_minus_m_2 = bigint::elem_sub(m_1, &m_2, p);
let h = bigint::elem_mul(&self.qInv, m_1_minus_m_2, p);
// Step 2.b.iv. The reduction in the modular multiplication isn't
// necessary because `h < p` and `p * q == n` implies `h * q < n`.
// Modular arithmetic is used simply to avoid implementing
// non-modular arithmetic.
let h = bigint::elem_widen(h, n);
let q_times_h = bigint::elem_mul(&self.q_mod_n, h, n);
let m_2 = bigint::elem_widen(m_2, n);
let m = bigint::elem_add(m_2, q_times_h, n);
// Step 2.b.v isn't needed since there are only two primes.
// Verify the result to protect against fault attacks as described
// in "On the Importance of Checking Cryptographic Protocols for
// Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton.
// This check is cheap assuming `e` is small, which is ensured during
// `KeyPair` construction. Note that this is the only validation of `e`
// that is done other than basic checks on its size, oddness, and
// minimum value, since the relationship of `e` to `d`, `p`, and `q` is
// not verified during `KeyPair` construction.
{
let verify = self.public.exponentiate_elem(m.clone());
bigint::elem_verify_equal_consttime(&verify, &c)?;
}
// Step 3 will be done by the caller.
Ok(m)
}
}