rustls/conn.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
use crate::common_state::{CommonState, Context, IoState, State};
use crate::enums::{AlertDescription, ContentType};
use crate::error::{Error, PeerMisbehaved};
#[cfg(feature = "logging")]
use crate::log::trace;
use crate::msgs::deframer::{Deframed, DeframerSliceBuffer, DeframerVecBuffer, MessageDeframer};
use crate::msgs::handshake::Random;
use crate::msgs::message::{Message, MessagePayload, PlainMessage};
use crate::suites::{ExtractedSecrets, PartiallyExtractedSecrets};
use crate::vecbuf::ChunkVecBuffer;
use alloc::boxed::Box;
use core::fmt::Debug;
use core::mem;
use core::ops::{Deref, DerefMut};
use std::io;
/// A client or server connection.
#[derive(Debug)]
pub enum Connection {
/// A client connection
Client(crate::client::ClientConnection),
/// A server connection
Server(crate::server::ServerConnection),
}
impl Connection {
/// Read TLS content from `rd`.
///
/// See [`ConnectionCommon::read_tls()`] for more information.
pub fn read_tls(&mut self, rd: &mut dyn io::Read) -> Result<usize, io::Error> {
match self {
Self::Client(conn) => conn.read_tls(rd),
Self::Server(conn) => conn.read_tls(rd),
}
}
/// Writes TLS messages to `wr`.
///
/// See [`ConnectionCommon::write_tls()`] for more information.
pub fn write_tls(&mut self, wr: &mut dyn io::Write) -> Result<usize, io::Error> {
self.sendable_tls.write_to(wr)
}
/// Returns an object that allows reading plaintext.
pub fn reader(&mut self) -> Reader {
match self {
Self::Client(conn) => conn.reader(),
Self::Server(conn) => conn.reader(),
}
}
/// Returns an object that allows writing plaintext.
pub fn writer(&mut self) -> Writer {
match self {
Self::Client(conn) => Writer::new(&mut **conn),
Self::Server(conn) => Writer::new(&mut **conn),
}
}
/// Processes any new packets read by a previous call to [`Connection::read_tls`].
///
/// See [`ConnectionCommon::process_new_packets()`] for more information.
pub fn process_new_packets(&mut self) -> Result<IoState, Error> {
match self {
Self::Client(conn) => conn.process_new_packets(),
Self::Server(conn) => conn.process_new_packets(),
}
}
/// Derives key material from the agreed connection secrets.
///
/// See [`ConnectionCommon::export_keying_material()`] for more information.
pub fn export_keying_material<T: AsMut<[u8]>>(
&self,
output: T,
label: &[u8],
context: Option<&[u8]>,
) -> Result<T, Error> {
match self {
Self::Client(conn) => conn.export_keying_material(output, label, context),
Self::Server(conn) => conn.export_keying_material(output, label, context),
}
}
/// This function uses `io` to complete any outstanding IO for this connection.
///
/// See [`ConnectionCommon::complete_io()`] for more information.
pub fn complete_io<T>(&mut self, io: &mut T) -> Result<(usize, usize), io::Error>
where
Self: Sized,
T: io::Read + io::Write,
{
match self {
Self::Client(conn) => conn.complete_io(io),
Self::Server(conn) => conn.complete_io(io),
}
}
/// Extract secrets, so they can be used when configuring kTLS, for example.
/// Should be used with care as it exposes secret key material.
pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
match self {
Self::Client(client) => client.dangerous_extract_secrets(),
Self::Server(server) => server.dangerous_extract_secrets(),
}
}
}
impl Deref for Connection {
type Target = CommonState;
fn deref(&self) -> &Self::Target {
match self {
Self::Client(conn) => &conn.core.common_state,
Self::Server(conn) => &conn.core.common_state,
}
}
}
impl DerefMut for Connection {
fn deref_mut(&mut self) -> &mut Self::Target {
match self {
Self::Client(conn) => &mut conn.core.common_state,
Self::Server(conn) => &mut conn.core.common_state,
}
}
}
/// A structure that implements [`std::io::Read`] for reading plaintext.
pub struct Reader<'a> {
received_plaintext: &'a mut ChunkVecBuffer,
peer_cleanly_closed: bool,
has_seen_eof: bool,
}
impl<'a> io::Read for Reader<'a> {
/// Obtain plaintext data received from the peer over this TLS connection.
///
/// If the peer closes the TLS session cleanly, this returns `Ok(0)` once all
/// the pending data has been read. No further data can be received on that
/// connection, so the underlying TCP connection should be half-closed too.
///
/// If the peer closes the TLS session uncleanly (a TCP EOF without sending a
/// `close_notify` alert) this function returns a `std::io::Error` of type
/// `ErrorKind::UnexpectedEof` once any pending data has been read.
///
/// Note that support for `close_notify` varies in peer TLS libraries: many do not
/// support it and uncleanly close the TCP connection (this might be
/// vulnerable to truncation attacks depending on the application protocol).
/// This means applications using rustls must both handle EOF
/// from this function, *and* unexpected EOF of the underlying TCP connection.
///
/// If there are no bytes to read, this returns `Err(ErrorKind::WouldBlock.into())`.
///
/// You may learn the number of bytes available at any time by inspecting
/// the return of [`Connection::process_new_packets`].
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let len = self.received_plaintext.read(buf)?;
if len == 0 && !buf.is_empty() {
// No bytes available:
match (self.peer_cleanly_closed, self.has_seen_eof) {
// cleanly closed; don't care about TCP EOF: express this as Ok(0)
(true, _) => {}
// unclean closure
(false, true) => {
return Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
UNEXPECTED_EOF_MESSAGE,
))
}
// connection still going, but needs more data: signal `WouldBlock` so that
// the caller knows this
(false, false) => return Err(io::ErrorKind::WouldBlock.into()),
}
}
Ok(len)
}
/// Obtain plaintext data received from the peer over this TLS connection.
///
/// If the peer closes the TLS session, this returns `Ok(())` without filling
/// any more of the buffer once all the pending data has been read. No further
/// data can be received on that connection, so the underlying TCP connection
/// should be half-closed too.
///
/// If the peer closes the TLS session uncleanly (a TCP EOF without sending a
/// `close_notify` alert) this function returns a `std::io::Error` of type
/// `ErrorKind::UnexpectedEof` once any pending data has been read.
///
/// Note that support for `close_notify` varies in peer TLS libraries: many do not
/// support it and uncleanly close the TCP connection (this might be
/// vulnerable to truncation attacks depending on the application protocol).
/// This means applications using rustls must both handle EOF
/// from this function, *and* unexpected EOF of the underlying TCP connection.
///
/// If there are no bytes to read, this returns `Err(ErrorKind::WouldBlock.into())`.
///
/// You may learn the number of bytes available at any time by inspecting
/// the return of [`Connection::process_new_packets`].
#[cfg(read_buf)]
fn read_buf(&mut self, mut cursor: core::io::BorrowedCursor<'_>) -> io::Result<()> {
let before = cursor.written();
self.received_plaintext
.read_buf(cursor.reborrow())?;
let len = cursor.written() - before;
if len == 0 && cursor.capacity() > 0 {
// No bytes available:
match (self.peer_cleanly_closed, self.has_seen_eof) {
// cleanly closed; don't care about TCP EOF: express this as Ok(0)
(true, _) => {}
// unclean closure
(false, true) => {
return Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
UNEXPECTED_EOF_MESSAGE,
));
}
// connection still going, but need more data: signal `WouldBlock` so that
// the caller knows this
(false, false) => return Err(io::ErrorKind::WouldBlock.into()),
}
}
Ok(())
}
}
/// Internal trait implemented by the [`ServerConnection`]/[`ClientConnection`]
/// allowing them to be the subject of a [`Writer`].
///
/// [`ServerConnection`]: crate::ServerConnection
/// [`ClientConnection`]: crate::ClientConnection
pub(crate) trait PlaintextSink {
fn write(&mut self, buf: &[u8]) -> io::Result<usize>;
fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize>;
fn flush(&mut self) -> io::Result<()>;
}
impl<T> PlaintextSink for ConnectionCommon<T> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
Ok(self.send_some_plaintext(buf))
}
fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
let mut sz = 0;
for buf in bufs {
sz += self.send_some_plaintext(buf);
}
Ok(sz)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
/// A structure that implements [`std::io::Write`] for writing plaintext.
pub struct Writer<'a> {
sink: &'a mut dyn PlaintextSink,
}
impl<'a> Writer<'a> {
/// Create a new Writer.
///
/// This is not an external interface. Get one of these objects
/// from [`Connection::writer`].
pub(crate) fn new(sink: &'a mut dyn PlaintextSink) -> Self {
Writer { sink }
}
}
impl<'a> io::Write for Writer<'a> {
/// Send the plaintext `buf` to the peer, encrypting
/// and authenticating it. Once this function succeeds
/// you should call [`Connection::write_tls`] which will output the
/// corresponding TLS records.
///
/// This function buffers plaintext sent before the
/// TLS handshake completes, and sends it as soon
/// as it can. See [`CommonState::set_buffer_limit`] to control
/// the size of this buffer.
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.sink.write(buf)
}
fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
self.sink.write_vectored(bufs)
}
fn flush(&mut self) -> io::Result<()> {
self.sink.flush()
}
}
#[derive(Debug)]
pub(crate) struct ConnectionRandoms {
pub(crate) client: [u8; 32],
pub(crate) server: [u8; 32],
}
/// How many ChangeCipherSpec messages we accept and drop in TLS1.3 handshakes.
/// The spec says 1, but implementations (namely the boringssl test suite) get
/// this wrong. BoringSSL itself accepts up to 32.
static TLS13_MAX_DROPPED_CCS: u8 = 2u8;
impl ConnectionRandoms {
pub(crate) fn new(client: Random, server: Random) -> Self {
Self {
client: client.0,
server: server.0,
}
}
}
// --- Common (to client and server) connection functions ---
fn is_valid_ccs(msg: &PlainMessage) -> bool {
// We passthrough ChangeCipherSpec messages in the deframer without decrypting them.
// Note: this is prior to the record layer, so is unencrypted. See
// third paragraph of section 5 in RFC8446.
msg.typ == ContentType::ChangeCipherSpec && msg.payload.0 == [0x01]
}
/// Interface shared by client and server connections.
pub struct ConnectionCommon<Data> {
pub(crate) core: ConnectionCore<Data>,
deframer_buffer: DeframerVecBuffer,
}
impl<Data> ConnectionCommon<Data> {
/// Returns an object that allows reading plaintext.
pub fn reader(&mut self) -> Reader {
let common = &mut self.core.common_state;
Reader {
received_plaintext: &mut common.received_plaintext,
// Are we done? i.e., have we processed all received messages, and received a
// close_notify to indicate that no new messages will arrive?
peer_cleanly_closed: common.has_received_close_notify
&& !self.deframer_buffer.has_pending(),
has_seen_eof: common.has_seen_eof,
}
}
/// Returns an object that allows writing plaintext.
pub fn writer(&mut self) -> Writer {
Writer::new(self)
}
/// This function uses `io` to complete any outstanding IO for
/// this connection.
///
/// This is a convenience function which solely uses other parts
/// of the public API.
///
/// What this means depends on the connection state:
///
/// - If the connection [`is_handshaking`], then IO is performed until
/// the handshake is complete.
/// - Otherwise, if [`wants_write`] is true, [`write_tls`] is invoked
/// until it is all written.
/// - Otherwise, if [`wants_read`] is true, [`read_tls`] is invoked
/// once.
///
/// The return value is the number of bytes read from and written
/// to `io`, respectively.
///
/// This function will block if `io` blocks.
///
/// Errors from TLS record handling (i.e., from [`process_new_packets`])
/// are wrapped in an `io::ErrorKind::InvalidData`-kind error.
///
/// [`is_handshaking`]: CommonState::is_handshaking
/// [`wants_read`]: CommonState::wants_read
/// [`wants_write`]: CommonState::wants_write
/// [`write_tls`]: ConnectionCommon::write_tls
/// [`read_tls`]: ConnectionCommon::read_tls
/// [`process_new_packets`]: ConnectionCommon::process_new_packets
pub fn complete_io<T>(&mut self, io: &mut T) -> Result<(usize, usize), io::Error>
where
Self: Sized,
T: io::Read + io::Write,
{
let mut eof = false;
let mut wrlen = 0;
let mut rdlen = 0;
loop {
let until_handshaked = self.is_handshaking();
if !self.wants_write() && !self.wants_read() {
// We will make no further progress.
return Ok((rdlen, wrlen));
}
while self.wants_write() {
wrlen += self.write_tls(io)?;
}
io.flush()?;
if !until_handshaked && wrlen > 0 {
return Ok((rdlen, wrlen));
}
while !eof && self.wants_read() {
let read_size = match self.read_tls(io) {
Ok(0) => {
eof = true;
Some(0)
}
Ok(n) => {
rdlen += n;
Some(n)
}
Err(ref err) if err.kind() == io::ErrorKind::Interrupted => None, // nothing to do
Err(err) => return Err(err),
};
if read_size.is_some() {
break;
}
}
match self.process_new_packets() {
Ok(_) => {}
Err(e) => {
// In case we have an alert to send describing this error,
// try a last-gasp write -- but don't predate the primary
// error.
let _ignored = self.write_tls(io);
let _ignored = io.flush();
return Err(io::Error::new(io::ErrorKind::InvalidData, e));
}
};
// if we're doing IO until handshaked, and we believe we've finished handshaking,
// but process_new_packets() has queued TLS data to send, loop around again to write
// the queued messages.
if until_handshaked && !self.is_handshaking() && self.wants_write() {
continue;
}
match (eof, until_handshaked, self.is_handshaking()) {
(_, true, false) => return Ok((rdlen, wrlen)),
(_, false, _) => return Ok((rdlen, wrlen)),
(true, true, true) => return Err(io::Error::from(io::ErrorKind::UnexpectedEof)),
(..) => {}
}
}
}
/// Extract the first handshake message.
///
/// This is a shortcut to the `process_new_packets()` -> `process_msg()` ->
/// `process_handshake_messages()` path, specialized for the first handshake message.
pub(crate) fn first_handshake_message(&mut self) -> Result<Option<Message>, Error> {
let mut deframer_buffer = self.deframer_buffer.borrow();
let res = self
.core
.deframe(None, &mut deframer_buffer);
let discard = deframer_buffer.pending_discard();
self.deframer_buffer.discard(discard);
match res?.map(Message::try_from) {
Some(Ok(msg)) => Ok(Some(msg)),
Some(Err(err)) => Err(self.send_fatal_alert(AlertDescription::DecodeError, err)),
None => Ok(None),
}
}
pub(crate) fn replace_state(&mut self, new: Box<dyn State<Data>>) {
self.core.state = Ok(new);
}
/// Processes any new packets read by a previous call to
/// [`Connection::read_tls`].
///
/// Errors from this function relate to TLS protocol errors, and
/// are fatal to the connection. Future calls after an error will do
/// no new work and will return the same error. After an error is
/// received from [`process_new_packets`], you should not call [`read_tls`]
/// any more (it will fill up buffers to no purpose). However, you
/// may call the other methods on the connection, including `write`,
/// `send_close_notify`, and `write_tls`. Most likely you will want to
/// call `write_tls` to send any alerts queued by the error and then
/// close the underlying connection.
///
/// Success from this function comes with some sundry state data
/// about the connection.
///
/// [`read_tls`]: Connection::read_tls
/// [`process_new_packets`]: Connection::process_new_packets
#[inline]
pub fn process_new_packets(&mut self) -> Result<IoState, Error> {
self.core
.process_new_packets(&mut self.deframer_buffer)
}
/// Read TLS content from `rd` into the internal buffer.
///
/// Due to the internal buffering, `rd` can supply TLS messages in arbitrary-sized chunks (like
/// a socket or pipe might).
///
/// You should call [`process_new_packets()`] each time a call to this function succeeds in order
/// to empty the incoming TLS data buffer.
///
/// This function returns `Ok(0)` when the underlying `rd` does so. This typically happens when
/// a socket is cleanly closed, or a file is at EOF. Errors may result from the IO done through
/// `rd`; additionally, errors of `ErrorKind::Other` are emitted to signal backpressure:
///
/// * In order to empty the incoming TLS data buffer, you should call [`process_new_packets()`]
/// each time a call to this function succeeds.
/// * In order to empty the incoming plaintext data buffer, you should empty it through
/// the [`reader()`] after the call to [`process_new_packets()`].
///
/// [`process_new_packets()`]: ConnectionCommon::process_new_packets
/// [`reader()`]: ConnectionCommon::reader
pub fn read_tls(&mut self, rd: &mut dyn io::Read) -> Result<usize, io::Error> {
if self.received_plaintext.is_full() {
return Err(io::Error::new(
io::ErrorKind::Other,
"received plaintext buffer full",
));
}
let res = self
.core
.message_deframer
.read(rd, &mut self.deframer_buffer);
if let Ok(0) = res {
self.has_seen_eof = true;
}
res
}
/// Writes TLS messages to `wr`.
///
/// On success, this function returns `Ok(n)` where `n` is a number of bytes written to `wr`
/// (after encoding and encryption).
///
/// After this function returns, the connection buffer may not yet be fully flushed. The
/// [`CommonState::wants_write`] function can be used to check if the output buffer is empty.
pub fn write_tls(&mut self, wr: &mut dyn io::Write) -> Result<usize, io::Error> {
self.sendable_tls.write_to(wr)
}
/// Derives key material from the agreed connection secrets.
///
/// This function fills in `output` with `output.len()` bytes of key
/// material derived from the master session secret using `label`
/// and `context` for diversification. Ownership of the buffer is taken
/// by the function and returned via the Ok result to ensure no key
/// material leaks if the function fails.
///
/// See RFC5705 for more details on what this does and is for.
///
/// For TLS1.3 connections, this function does not use the
/// "early" exporter at any point.
///
/// This function fails if called prior to the handshake completing;
/// check with [`CommonState::is_handshaking`] first.
///
/// This function fails if `output.len()` is zero.
#[inline]
pub fn export_keying_material<T: AsMut<[u8]>>(
&self,
output: T,
label: &[u8],
context: Option<&[u8]>,
) -> Result<T, Error> {
self.core
.export_keying_material(output, label, context)
}
/// Extract secrets, so they can be used when configuring kTLS, for example.
/// Should be used with care as it exposes secret key material.
pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
if !self.enable_secret_extraction {
return Err(Error::General("Secret extraction is disabled".into()));
}
let st = self.core.state?;
let record_layer = self.core.common_state.record_layer;
let PartiallyExtractedSecrets { tx, rx } = st.extract_secrets()?;
Ok(ExtractedSecrets {
tx: (record_layer.write_seq(), tx),
rx: (record_layer.read_seq(), rx),
})
}
}
impl<'a, Data> From<&'a mut ConnectionCommon<Data>> for Context<'a, Data> {
fn from(conn: &'a mut ConnectionCommon<Data>) -> Self {
Self {
common: &mut conn.core.common_state,
data: &mut conn.core.data,
}
}
}
impl<T> Deref for ConnectionCommon<T> {
type Target = CommonState;
fn deref(&self) -> &Self::Target {
&self.core.common_state
}
}
impl<T> DerefMut for ConnectionCommon<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.core.common_state
}
}
impl<Data> From<ConnectionCore<Data>> for ConnectionCommon<Data> {
fn from(core: ConnectionCore<Data>) -> Self {
Self {
core,
deframer_buffer: DeframerVecBuffer::default(),
}
}
}
pub(crate) struct ConnectionCore<Data> {
pub(crate) state: Result<Box<dyn State<Data>>, Error>,
pub(crate) data: Data,
pub(crate) common_state: CommonState,
pub(crate) message_deframer: MessageDeframer,
}
impl<Data> ConnectionCore<Data> {
pub(crate) fn new(state: Box<dyn State<Data>>, data: Data, common_state: CommonState) -> Self {
Self {
state: Ok(state),
data,
common_state,
message_deframer: MessageDeframer::default(),
}
}
pub(crate) fn process_new_packets(
&mut self,
deframer_buffer: &mut DeframerVecBuffer,
) -> Result<IoState, Error> {
let mut state = match mem::replace(&mut self.state, Err(Error::HandshakeNotComplete)) {
Ok(state) => state,
Err(e) => {
self.state = Err(e.clone());
return Err(e);
}
};
let mut borrowed_buffer = deframer_buffer.borrow();
while let Some(msg) = self.deframe(Some(&*state), &mut borrowed_buffer)? {
match self.process_msg(msg, state) {
Ok(new) => state = new,
Err(e) => {
self.state = Err(e.clone());
let discard = borrowed_buffer.pending_discard();
deframer_buffer.discard(discard);
return Err(e);
}
}
}
let discard = borrowed_buffer.pending_discard();
deframer_buffer.discard(discard);
self.state = Ok(state);
Ok(self.common_state.current_io_state())
}
/// Pull a message out of the deframer and send any messages that need to be sent as a result.
fn deframe(
&mut self,
state: Option<&dyn State<Data>>,
deframer_buffer: &mut DeframerSliceBuffer,
) -> Result<Option<PlainMessage>, Error> {
match self.message_deframer.pop(
&mut self.common_state.record_layer,
self.common_state.negotiated_version,
deframer_buffer,
) {
Ok(Some(Deframed {
want_close_before_decrypt,
aligned,
trial_decryption_finished,
message,
})) => {
if want_close_before_decrypt {
self.common_state.send_close_notify();
}
if trial_decryption_finished {
self.common_state
.record_layer
.finish_trial_decryption();
}
self.common_state.aligned_handshake = aligned;
Ok(Some(message))
}
Ok(None) => Ok(None),
Err(err @ Error::InvalidMessage(_)) => {
if self.common_state.is_quic() {
self.common_state.quic.alert = Some(AlertDescription::DecodeError);
}
Err(if !self.common_state.is_quic() {
self.common_state
.send_fatal_alert(AlertDescription::DecodeError, err)
} else {
err
})
}
Err(err @ Error::PeerSentOversizedRecord) => Err(self
.common_state
.send_fatal_alert(AlertDescription::RecordOverflow, err)),
Err(err @ Error::DecryptError) => {
if let Some(state) = state {
state.handle_decrypt_error();
}
Err(self
.common_state
.send_fatal_alert(AlertDescription::BadRecordMac, err))
}
Err(e) => Err(e),
}
}
fn process_msg(
&mut self,
msg: PlainMessage,
state: Box<dyn State<Data>>,
) -> Result<Box<dyn State<Data>>, Error> {
// Drop CCS messages during handshake in TLS1.3
if msg.typ == ContentType::ChangeCipherSpec
&& !self
.common_state
.may_receive_application_data
&& self.common_state.is_tls13()
{
if !is_valid_ccs(&msg)
|| self.common_state.received_middlebox_ccs > TLS13_MAX_DROPPED_CCS
{
// "An implementation which receives any other change_cipher_spec value or
// which receives a protected change_cipher_spec record MUST abort the
// handshake with an "unexpected_message" alert."
return Err(self.common_state.send_fatal_alert(
AlertDescription::UnexpectedMessage,
PeerMisbehaved::IllegalMiddleboxChangeCipherSpec,
));
} else {
self.common_state.received_middlebox_ccs += 1;
trace!("Dropping CCS");
return Ok(state);
}
}
// Now we can fully parse the message payload.
let msg = match Message::try_from(msg) {
Ok(msg) => msg,
Err(err) => {
return Err(self
.common_state
.send_fatal_alert(AlertDescription::DecodeError, err));
}
};
// For alerts, we have separate logic.
if let MessagePayload::Alert(alert) = &msg.payload {
self.common_state.process_alert(alert)?;
return Ok(state);
}
self.common_state
.process_main_protocol(msg, state, &mut self.data)
}
pub(crate) fn export_keying_material<T: AsMut<[u8]>>(
&self,
mut output: T,
label: &[u8],
context: Option<&[u8]>,
) -> Result<T, Error> {
if output.as_mut().is_empty() {
return Err(Error::General(
"export_keying_material with zero-length output".into(),
));
}
match self.state.as_ref() {
Ok(st) => st
.export_keying_material(output.as_mut(), label, context)
.map(|_| output),
Err(e) => Err(e.clone()),
}
}
}
/// Data specific to the peer's side (client or server).
pub trait SideData: Debug {}
const UNEXPECTED_EOF_MESSAGE: &str = "peer closed connection without sending TLS close_notify: \
https://docs.rs/rustls/latest/rustls/manual/_03_howto/index.html#unexpected-eof";