1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
use super::hmac;
use super::ActiveKeyExchange;
use crate::error::Error;
use alloc::boxed::Box;
use zeroize::Zeroize;
/// Implementation of `HkdfExpander` via `hmac::Key`.
pub struct HkdfExpanderUsingHmac(Box<dyn hmac::Key>);
impl HkdfExpanderUsingHmac {
fn expand_unchecked(&self, info: &[&[u8]], output: &mut [u8]) {
let mut term = hmac::Tag::new(b"");
for (n, chunk) in output
.chunks_mut(self.0.tag_len())
.enumerate()
{
term = self
.0
.sign_concat(term.as_ref(), info, &[(n + 1) as u8]);
chunk.copy_from_slice(&term.as_ref()[..chunk.len()]);
}
}
}
impl HkdfExpander for HkdfExpanderUsingHmac {
fn expand_slice(&self, info: &[&[u8]], output: &mut [u8]) -> Result<(), OutputLengthError> {
if output.len() > 255 * self.0.tag_len() {
return Err(OutputLengthError);
}
self.expand_unchecked(info, output);
Ok(())
}
fn expand_block(&self, info: &[&[u8]]) -> OkmBlock {
let mut tag = [0u8; hmac::Tag::MAX_LEN];
let reduced_tag = &mut tag[..self.0.tag_len()];
self.expand_unchecked(info, reduced_tag);
OkmBlock::new(reduced_tag)
}
fn hash_len(&self) -> usize {
self.0.tag_len()
}
}
/// Implementation of `Hkdf` (and thence `HkdfExpander`) via `hmac::Hmac`.
pub struct HkdfUsingHmac<'a>(pub &'a dyn hmac::Hmac);
impl<'a> Hkdf for HkdfUsingHmac<'a> {
fn extract_from_zero_ikm(&self, salt: Option<&[u8]>) -> Box<dyn HkdfExpander> {
let zeroes = [0u8; hmac::Tag::MAX_LEN];
let salt = match salt {
Some(salt) => salt,
None => &zeroes[..self.0.hash_output_len()],
};
Box::new(HkdfExpanderUsingHmac(
self.0.with_key(
self.0
.with_key(salt)
.sign(&[&zeroes[..self.0.hash_output_len()]])
.as_ref(),
),
))
}
fn extract_from_secret(&self, salt: Option<&[u8]>, secret: &[u8]) -> Box<dyn HkdfExpander> {
let zeroes = [0u8; hmac::Tag::MAX_LEN];
let salt = match salt {
Some(salt) => salt,
None => &zeroes[..self.0.hash_output_len()],
};
Box::new(HkdfExpanderUsingHmac(
self.0.with_key(
self.0
.with_key(salt)
.sign(&[secret])
.as_ref(),
),
))
}
fn expander_for_okm(&self, okm: &OkmBlock) -> Box<dyn HkdfExpander> {
Box::new(HkdfExpanderUsingHmac(self.0.with_key(okm.as_ref())))
}
fn hmac_sign(&self, key: &OkmBlock, message: &[u8]) -> hmac::Tag {
self.0
.with_key(key.as_ref())
.sign(&[message])
}
}
/// Implementation of `HKDF-Expand` with an implicitly stored and immutable `PRK`.
pub trait HkdfExpander: Send + Sync {
/// `HKDF-Expand(PRK, info, L)` into a slice.
///
/// Where:
///
/// - `PRK` is the implicit key material represented by this instance.
/// - `L` is `output.len()`.
/// - `info` is a slice of byte slices, which should be processed sequentially
/// (or concatenated if that is not possible).
///
/// Returns `Err(OutputLengthError)` if `L` is larger than `255 * HashLen`.
/// Otherwise, writes to `output`.
fn expand_slice(&self, info: &[&[u8]], output: &mut [u8]) -> Result<(), OutputLengthError>;
/// `HKDF-Expand(PRK, info, L=HashLen)` returned as a value.
///
/// - `PRK` is the implicit key material represented by this instance.
/// - `L := HashLen`.
/// - `info` is a slice of byte slices, which should be processed sequentially
/// (or concatenated if that is not possible).
///
/// This is infallible, because by definition `OkmBlock` is always exactly
/// `HashLen` bytes long.
fn expand_block(&self, info: &[&[u8]]) -> OkmBlock;
/// Return what `HashLen` is for this instance.
///
/// This must be no larger than [`OkmBlock::MAX_LEN`].
fn hash_len(&self) -> usize;
}
/// A HKDF implementation oriented to the needs of TLS1.3.
///
/// See [RFC5869](https://datatracker.ietf.org/doc/html/rfc5869) for the terminology
/// used in this definition.
///
/// You can use [`HkdfUsingHmac`] which implements this trait on top of an implementation
/// of [`hmac::Hmac`].
pub trait Hkdf: Send + Sync {
/// `HKDF-Extract(salt, 0_HashLen)`
///
/// `0_HashLen` is a string of `HashLen` zero bytes.
///
/// A `salt` of `None` should be treated as a sequence of `HashLen` zero bytes.
fn extract_from_zero_ikm(&self, salt: Option<&[u8]>) -> Box<dyn HkdfExpander>;
/// `HKDF-Extract(salt, secret)`
///
/// A `salt` of `None` should be treated as a sequence of `HashLen` zero bytes.
fn extract_from_secret(&self, salt: Option<&[u8]>, secret: &[u8]) -> Box<dyn HkdfExpander>;
/// `HKDF-Extract(salt, shared_secret)` where `shared_secret` is the result of a key exchange.
///
/// Custom implementations should complete the key exchange by calling
/// `kx.complete(peer_pub_key)` and then using this as the input keying material to
/// `HKDF-Extract`.
///
/// A `salt` of `None` should be treated as a sequence of `HashLen` zero bytes.
fn extract_from_kx_shared_secret(
&self,
salt: Option<&[u8]>,
kx: Box<dyn ActiveKeyExchange>,
peer_pub_key: &[u8],
) -> Result<Box<dyn HkdfExpander>, Error> {
Ok(self.extract_from_secret(
salt,
kx.complete(peer_pub_key)?
.secret_bytes(),
))
}
/// Build a `HkdfExpander` using `okm` as the secret PRK.
fn expander_for_okm(&self, okm: &OkmBlock) -> Box<dyn HkdfExpander>;
/// Signs `message` using `key` viewed as a HMAC key.
///
/// This should use the same hash function as the HKDF functions in this
/// trait.
///
/// See [RFC2104](https://datatracker.ietf.org/doc/html/rfc2104) for the
/// definition of HMAC.
fn hmac_sign(&self, key: &OkmBlock, message: &[u8]) -> hmac::Tag;
}
/// `HKDF-Expand(PRK, info, L)` to construct any type from a byte array.
///
/// - `PRK` is the implicit key material represented by this instance.
/// - `L := N`; N is the size of the byte array.
/// - `info` is a slice of byte slices, which should be processed sequentially
/// (or concatenated if that is not possible).
///
/// This is infallible, because the set of types (and therefore their length) is known
/// at compile time.
pub fn expand<T, const N: usize>(expander: &dyn HkdfExpander, info: &[&[u8]]) -> T
where
T: From<[u8; N]>,
{
let mut output = [0u8; N];
expander
.expand_slice(info, &mut output)
.expect("expand type parameter T is too large");
T::from(output)
}
/// Output key material from HKDF, as a value type.
#[derive(Clone)]
pub struct OkmBlock {
buf: [u8; Self::MAX_LEN],
used: usize,
}
impl OkmBlock {
/// Build a single OKM block by copying a byte slice.
///
/// The slice can be up to [`OkmBlock::MAX_LEN`] bytes in length.
pub fn new(bytes: &[u8]) -> Self {
let mut tag = Self {
buf: [0u8; Self::MAX_LEN],
used: bytes.len(),
};
tag.buf[..bytes.len()].copy_from_slice(bytes);
tag
}
/// Maximum supported HMAC tag size: supports up to SHA512.
pub const MAX_LEN: usize = 64;
}
impl Drop for OkmBlock {
fn drop(&mut self) {
self.buf.zeroize();
}
}
impl AsRef<[u8]> for OkmBlock {
fn as_ref(&self) -> &[u8] {
&self.buf[..self.used]
}
}
/// An error type used for `HkdfExpander::expand_slice` when
/// the slice exceeds the maximum HKDF output length.
#[derive(Debug)]
pub struct OutputLengthError;
#[cfg(all(test, feature = "ring"))]
mod tests {
use super::{expand, Hkdf, HkdfUsingHmac};
use crate::test_provider::hmac;
use std::prelude::v1::*;
struct ByteArray<const N: usize>([u8; N]);
impl<const N: usize> From<[u8; N]> for ByteArray<N> {
fn from(array: [u8; N]) -> Self {
Self(array)
}
}
/// Test cases from appendix A in the RFC, minus cases requiring SHA1.
#[test]
fn test_case_1() {
let hkdf = HkdfUsingHmac(&hmac::HMAC_SHA256);
let ikm = &[0x0b; 22];
let salt = &[
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,
];
let info: &[&[u8]] = &[
&[0xf0, 0xf1, 0xf2],
&[0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9],
];
let output: ByteArray<42> = expand(
hkdf.extract_from_secret(Some(salt), ikm)
.as_ref(),
info,
);
assert_eq!(
&output.0,
&[
0x3c, 0xb2, 0x5f, 0x25, 0xfa, 0xac, 0xd5, 0x7a, 0x90, 0x43, 0x4f, 0x64, 0xd0, 0x36,
0x2f, 0x2a, 0x2d, 0x2d, 0x0a, 0x90, 0xcf, 0x1a, 0x5a, 0x4c, 0x5d, 0xb0, 0x2d, 0x56,
0xec, 0xc4, 0xc5, 0xbf, 0x34, 0x00, 0x72, 0x08, 0xd5, 0xb8, 0x87, 0x18, 0x58, 0x65
]
);
}
#[test]
fn test_case_2() {
let hkdf = HkdfUsingHmac(&hmac::HMAC_SHA256);
let ikm: Vec<u8> = (0x00u8..=0x4f).collect();
let salt: Vec<u8> = (0x60u8..=0xaf).collect();
let info: Vec<u8> = (0xb0u8..=0xff).collect();
let output: ByteArray<82> = expand(
hkdf.extract_from_secret(Some(&salt), &ikm)
.as_ref(),
&[&info],
);
assert_eq!(
&output.0,
&[
0xb1, 0x1e, 0x39, 0x8d, 0xc8, 0x03, 0x27, 0xa1, 0xc8, 0xe7, 0xf7, 0x8c, 0x59, 0x6a,
0x49, 0x34, 0x4f, 0x01, 0x2e, 0xda, 0x2d, 0x4e, 0xfa, 0xd8, 0xa0, 0x50, 0xcc, 0x4c,
0x19, 0xaf, 0xa9, 0x7c, 0x59, 0x04, 0x5a, 0x99, 0xca, 0xc7, 0x82, 0x72, 0x71, 0xcb,
0x41, 0xc6, 0x5e, 0x59, 0x0e, 0x09, 0xda, 0x32, 0x75, 0x60, 0x0c, 0x2f, 0x09, 0xb8,
0x36, 0x77, 0x93, 0xa9, 0xac, 0xa3, 0xdb, 0x71, 0xcc, 0x30, 0xc5, 0x81, 0x79, 0xec,
0x3e, 0x87, 0xc1, 0x4c, 0x01, 0xd5, 0xc1, 0xf3, 0x43, 0x4f, 0x1d, 0x87
]
);
}
#[test]
fn test_case_3() {
let hkdf = HkdfUsingHmac(&hmac::HMAC_SHA256);
let ikm = &[0x0b; 22];
let salt = &[];
let info = &[];
let output: ByteArray<42> = expand(
hkdf.extract_from_secret(Some(salt), ikm)
.as_ref(),
info,
);
assert_eq!(
&output.0,
&[
0x8d, 0xa4, 0xe7, 0x75, 0xa5, 0x63, 0xc1, 0x8f, 0x71, 0x5f, 0x80, 0x2a, 0x06, 0x3c,
0x5a, 0x31, 0xb8, 0xa1, 0x1f, 0x5c, 0x5e, 0xe1, 0x87, 0x9e, 0xc3, 0x45, 0x4e, 0x5f,
0x3c, 0x73, 0x8d, 0x2d, 0x9d, 0x20, 0x13, 0x95, 0xfa, 0xa4, 0xb6, 0x1a, 0x96, 0xc8
]
);
}
#[test]
fn test_salt_not_provided() {
// can't use test case 7, because we don't have (or want) SHA1.
//
// this output is generated with cryptography.io:
//
// >>> hkdf.HKDF(algorithm=hashes.SHA384(), length=96, salt=None, info=b"hello").derive(b"\x0b" * 40)
let hkdf = HkdfUsingHmac(&hmac::HMAC_SHA384);
let ikm = &[0x0b; 40];
let info = &[&b"hel"[..], &b"lo"[..]];
let output: ByteArray<96> = expand(
hkdf.extract_from_secret(None, ikm)
.as_ref(),
info,
);
assert_eq!(
&output.0,
&[
0xd5, 0x45, 0xdd, 0x3a, 0xff, 0x5b, 0x19, 0x46, 0xd4, 0x86, 0xfd, 0xb8, 0xd8, 0x88,
0x2e, 0xe0, 0x1c, 0xc1, 0xa5, 0x48, 0xb6, 0x05, 0x75, 0xe4, 0xd7, 0x5d, 0x0f, 0x5f,
0x23, 0x40, 0xee, 0x6c, 0x9e, 0x7c, 0x65, 0xd0, 0xee, 0x79, 0xdb, 0xb2, 0x07, 0x1d,
0x66, 0xa5, 0x50, 0xc4, 0x8a, 0xa3, 0x93, 0x86, 0x8b, 0x7c, 0x69, 0x41, 0x6b, 0x3e,
0x61, 0x44, 0x98, 0xb8, 0xc2, 0xfc, 0x82, 0x82, 0xae, 0xcd, 0x46, 0xcf, 0xb1, 0x47,
0xdc, 0xd0, 0x69, 0x0d, 0x19, 0xad, 0xe6, 0x6c, 0x70, 0xfe, 0x87, 0x92, 0x04, 0xb6,
0x82, 0x2d, 0x97, 0x7e, 0x46, 0x80, 0x4c, 0xe5, 0x76, 0x72, 0xb4, 0xb8
]
);
}
#[test]
fn test_output_length_bounds() {
let hkdf = HkdfUsingHmac(&hmac::HMAC_SHA256);
let ikm = &[];
let info = &[];
let mut output = [0u8; 32 * 255 + 1];
assert!(hkdf
.extract_from_secret(None, ikm)
.expand_slice(info, &mut output)
.is_err());
}
}