1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
use crate::error::InvalidMessage;

use alloc::vec::Vec;
use core::fmt::Debug;

/// Wrapper over a slice of bytes that allows reading chunks from
/// with the current position state held using a cursor.
///
/// A new reader for a sub section of the the buffer can be created
/// using the `sub` function or a section of a certain length can
/// be obtained using the `take` function
pub struct Reader<'a> {
    /// The underlying buffer storing the readers content
    buffer: &'a [u8],
    /// Stores the current reading position for the buffer
    cursor: usize,
}

impl<'a> Reader<'a> {
    /// Creates a new Reader of the provided `bytes` slice with
    /// the initial cursor position of zero.
    pub fn init(bytes: &[u8]) -> Reader {
        Reader {
            buffer: bytes,
            cursor: 0,
        }
    }

    /// Attempts to create a new Reader on a sub section of this
    /// readers bytes by taking a slice of the provided `length`
    /// will return None if there is not enough bytes
    pub fn sub(&mut self, length: usize) -> Result<Reader, InvalidMessage> {
        match self.take(length) {
            Some(bytes) => Ok(Reader::init(bytes)),
            None => Err(InvalidMessage::MessageTooShort),
        }
    }

    /// Borrows a slice of all the remaining bytes
    /// that appear after the cursor position.
    ///
    /// Moves the cursor to the end of the buffer length.
    pub fn rest(&mut self) -> &[u8] {
        let rest = &self.buffer[self.cursor..];
        self.cursor = self.buffer.len();
        rest
    }

    /// Attempts to borrow a slice of bytes from the current
    /// cursor position of `length` if there is not enough
    /// bytes remaining after the cursor to take the length
    /// then None is returned instead.
    pub fn take(&mut self, length: usize) -> Option<&[u8]> {
        if self.left() < length {
            return None;
        }
        let current = self.cursor;
        self.cursor += length;
        Some(&self.buffer[current..current + length])
    }

    /// Used to check whether the reader has any content left
    /// after the cursor (cursor has not reached end of buffer)
    pub fn any_left(&self) -> bool {
        self.cursor < self.buffer.len()
    }

    pub fn expect_empty(&self, name: &'static str) -> Result<(), InvalidMessage> {
        match self.any_left() {
            true => Err(InvalidMessage::TrailingData(name)),
            false => Ok(()),
        }
    }

    /// Returns the cursor position which is also the number
    /// of bytes that have been read from the buffer.
    pub fn used(&self) -> usize {
        self.cursor
    }

    /// Returns the number of bytes that are still able to be
    /// read (The number of remaining takes)
    pub fn left(&self) -> usize {
        self.buffer.len() - self.cursor
    }
}

/// Trait for implementing encoding and decoding functionality
/// on something.
pub trait Codec: Debug + Sized {
    /// Function for encoding itself by appending itself to
    /// the provided vec of bytes.
    fn encode(&self, bytes: &mut Vec<u8>);

    /// Function for decoding itself from the provided reader
    /// will return Some if the decoding was successful or
    /// None if it was not.
    fn read(_: &mut Reader) -> Result<Self, InvalidMessage>;

    /// Convenience function for encoding the implementation
    /// into a vec and returning it
    fn get_encoding(&self) -> Vec<u8> {
        let mut bytes = Vec::new();
        self.encode(&mut bytes);
        bytes
    }

    /// Function for wrapping a call to the read function in
    /// a Reader for the slice of bytes provided
    fn read_bytes(bytes: &[u8]) -> Result<Self, InvalidMessage> {
        let mut reader = Reader::init(bytes);
        Self::read(&mut reader)
    }
}

impl Codec for u8 {
    fn encode(&self, bytes: &mut Vec<u8>) {
        bytes.push(*self);
    }

    fn read(r: &mut Reader) -> Result<Self, InvalidMessage> {
        match r.take(1) {
            Some(&[byte]) => Ok(byte),
            _ => Err(InvalidMessage::MissingData("u8")),
        }
    }
}

pub(crate) fn put_u16(v: u16, out: &mut [u8]) {
    let out: &mut [u8; 2] = (&mut out[..2]).try_into().unwrap();
    *out = u16::to_be_bytes(v);
}

impl Codec for u16 {
    fn encode(&self, bytes: &mut Vec<u8>) {
        let mut b16 = [0u8; 2];
        put_u16(*self, &mut b16);
        bytes.extend_from_slice(&b16);
    }

    fn read(r: &mut Reader) -> Result<Self, InvalidMessage> {
        match r.take(2) {
            Some(&[b1, b2]) => Ok(Self::from_be_bytes([b1, b2])),
            _ => Err(InvalidMessage::MissingData("u8")),
        }
    }
}

// Make a distinct type for u24, even though it's a u32 underneath
#[allow(non_camel_case_types)]
#[derive(Debug, Copy, Clone)]
pub struct u24(pub u32);

#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
impl From<u24> for usize {
    #[inline]
    fn from(v: u24) -> Self {
        v.0 as Self
    }
}

impl Codec for u24 {
    fn encode(&self, bytes: &mut Vec<u8>) {
        let be_bytes = u32::to_be_bytes(self.0);
        bytes.extend_from_slice(&be_bytes[1..]);
    }

    fn read(r: &mut Reader) -> Result<Self, InvalidMessage> {
        match r.take(3) {
            Some(&[a, b, c]) => Ok(Self(u32::from_be_bytes([0, a, b, c]))),
            _ => Err(InvalidMessage::MissingData("u24")),
        }
    }
}

impl Codec for u32 {
    fn encode(&self, bytes: &mut Vec<u8>) {
        bytes.extend(Self::to_be_bytes(*self));
    }

    fn read(r: &mut Reader) -> Result<Self, InvalidMessage> {
        match r.take(4) {
            Some(&[a, b, c, d]) => Ok(Self::from_be_bytes([a, b, c, d])),
            _ => Err(InvalidMessage::MissingData("u32")),
        }
    }
}

pub(crate) fn put_u64(v: u64, bytes: &mut [u8]) {
    let bytes: &mut [u8; 8] = (&mut bytes[..8]).try_into().unwrap();
    *bytes = u64::to_be_bytes(v);
}

impl Codec for u64 {
    fn encode(&self, bytes: &mut Vec<u8>) {
        let mut b64 = [0u8; 8];
        put_u64(*self, &mut b64);
        bytes.extend_from_slice(&b64);
    }

    fn read(r: &mut Reader) -> Result<Self, InvalidMessage> {
        match r.take(8) {
            Some(&[a, b, c, d, e, f, g, h]) => Ok(Self::from_be_bytes([a, b, c, d, e, f, g, h])),
            _ => Err(InvalidMessage::MissingData("u64")),
        }
    }
}

/// Implement `Codec` for lists of elements that implement `TlsListElement`.
///
/// `TlsListElement` provides the size of the length prefix for the list.
impl<T: Codec + TlsListElement + Debug> Codec for Vec<T> {
    fn encode(&self, bytes: &mut Vec<u8>) {
        let nest = LengthPrefixedBuffer::new(T::SIZE_LEN, bytes);

        for i in self {
            i.encode(nest.buf);
        }
    }

    fn read(r: &mut Reader) -> Result<Self, InvalidMessage> {
        let len = match T::SIZE_LEN {
            ListLength::U8 => usize::from(u8::read(r)?),
            ListLength::U16 => usize::from(u16::read(r)?),
            ListLength::U24 { max } => Ord::min(usize::from(u24::read(r)?), max),
        };

        let mut sub = r.sub(len)?;
        let mut ret = Self::new();
        while sub.any_left() {
            ret.push(T::read(&mut sub)?);
        }

        Ok(ret)
    }
}

/// A trait for types that can be encoded and decoded in a list.
///
/// This trait is used to implement `Codec` for `Vec<T>`. Lists in the TLS wire format are
/// prefixed with a length, the size of which depends on the type of the list elements.
/// As such, the `Codec` implementation for `Vec<T>` requires an implementation of this trait
/// for its element type `T`.
pub(crate) trait TlsListElement {
    const SIZE_LEN: ListLength;
}

/// The length of the length prefix for a list.
///
/// The types that appear in lists are limited to three kinds of length prefixes:
/// 1, 2, and 3 bytes. For the latter kind, we require a `TlsListElement` implementer
/// to specify a maximum length.
pub(crate) enum ListLength {
    U8,
    U16,
    U24 { max: usize },
}

/// Tracks encoding a length-delimited structure in a single pass.
pub(crate) struct LengthPrefixedBuffer<'a> {
    pub(crate) buf: &'a mut Vec<u8>,
    len_offset: usize,
    size_len: ListLength,
}

impl<'a> LengthPrefixedBuffer<'a> {
    /// Inserts a dummy length into `buf`, and remembers where it went.
    ///
    /// After this, the body of the length-delimited structure should be appended to `LengthPrefixedBuffer::buf`.
    /// The length header is corrected in `LengthPrefixedBuffer::drop`.
    pub(crate) fn new(size_len: ListLength, buf: &'a mut Vec<u8>) -> Self {
        let len_offset = buf.len();
        buf.extend(match size_len {
            ListLength::U8 => &[0xff][..],
            ListLength::U16 => &[0xff, 0xff],
            ListLength::U24 { .. } => &[0xff, 0xff, 0xff],
        });

        Self {
            buf,
            len_offset,
            size_len,
        }
    }
}

impl<'a> Drop for LengthPrefixedBuffer<'a> {
    /// Goes back and corrects the length previously inserted at the start of the structure.
    fn drop(&mut self) {
        match self.size_len {
            ListLength::U8 => {
                let len = self.buf.len() - self.len_offset - 1;
                debug_assert!(len <= 0xff);
                self.buf[self.len_offset] = len as u8;
            }
            ListLength::U16 => {
                let len = self.buf.len() - self.len_offset - 2;
                debug_assert!(len <= 0xffff);
                let out: &mut [u8; 2] = (&mut self.buf[self.len_offset..self.len_offset + 2])
                    .try_into()
                    .unwrap();
                *out = u16::to_be_bytes(len as u16);
            }
            ListLength::U24 { .. } => {
                let len = self.buf.len() - self.len_offset - 3;
                debug_assert!(len <= 0xff_ffff);
                let len_bytes = u32::to_be_bytes(len as u32);
                let out: &mut [u8; 3] = (&mut self.buf[self.len_offset..self.len_offset + 3])
                    .try_into()
                    .unwrap();
                out.copy_from_slice(&len_bytes[1..]);
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::prelude::v1::*;
    use std::vec;

    #[test]
    fn interrupted_length_prefixed_buffer_leaves_maximum_length() {
        let mut buf = Vec::new();
        let nested = LengthPrefixedBuffer::new(ListLength::U16, &mut buf);
        nested.buf.push(0xaa);
        assert_eq!(nested.buf, &vec![0xff, 0xff, 0xaa]);
        // <- if the buffer is accidentally read here, there is no possiblity
        //    that the contents of the length-prefixed buffer are interpretted
        //    as a subsequent encoding (perhaps allowing injection of a different
        //    extension)
        drop(nested);
        assert_eq!(buf, vec![0x00, 0x01, 0xaa]);
    }
}