rustls/msgs/deframer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
use alloc::vec::Vec;
use core::ops::Range;
use core::slice::SliceIndex;
use std::io;
use super::base::Payload;
use super::codec::Codec;
use super::message::PlainMessage;
use crate::enums::{ContentType, ProtocolVersion};
use crate::error::{Error, InvalidMessage, PeerMisbehaved};
use crate::msgs::codec;
use crate::msgs::message::{MessageError, OpaqueMessage};
use crate::record_layer::{Decrypted, RecordLayer};
/// This deframer works to reconstruct TLS messages from a stream of arbitrary-sized reads.
///
/// It buffers incoming data into a `Vec` through `read()`, and returns messages through `pop()`.
/// QUIC connections will call `push()` to append handshake payload data directly.
#[derive(Default)]
pub struct MessageDeframer {
/// Set if the peer is not talking TLS, but some other
/// protocol. The caller should abort the connection, because
/// the deframer cannot recover.
last_error: Option<Error>,
/// If we're in the middle of joining a handshake payload, this is the metadata.
joining_hs: Option<HandshakePayloadMeta>,
}
impl MessageDeframer {
/// Return any decrypted messages that the deframer has been able to parse.
///
/// Returns an `Error` if the deframer failed to parse some message contents or if decryption
/// failed, `Ok(None)` if no full message is buffered or if trial decryption failed, and
/// `Ok(Some(_))` if a valid message was found and decrypted successfully.
pub fn pop(
&mut self,
record_layer: &mut RecordLayer,
negotiated_version: Option<ProtocolVersion>,
buffer: &mut DeframerSliceBuffer,
) -> Result<Option<Deframed>, Error> {
if let Some(last_err) = self.last_error.clone() {
return Err(last_err);
} else if buffer.is_empty() {
return Ok(None);
}
// We loop over records we've received but not processed yet.
// For records that decrypt as `Handshake`, we keep the current state of the joined
// handshake message payload in `self.joining_hs`, appending to it as we see records.
let expected_len = loop {
let start = match &self.joining_hs {
Some(meta) => {
match meta.expected_len {
// We're joining a handshake payload, and we've seen the full payload.
Some(len) if len <= meta.payload.len() => break len,
// Not enough data, and we can't parse any more out of the buffer (QUIC).
_ if meta.quic => return Ok(None),
// Try parsing some more of the encrypted buffered data.
_ => meta.message.end,
}
}
None => 0,
};
// Does our `buf` contain a full message? It does if it is big enough to
// contain a header, and that header has a length which falls within `buf`.
// If so, deframe it and place the message onto the frames output queue.
let mut rd = codec::Reader::init(buffer.filled_get(start..));
let m = match OpaqueMessage::read(&mut rd) {
Ok(m) => m,
Err(msg_err) => {
let err_kind = match msg_err {
MessageError::TooShortForHeader | MessageError::TooShortForLength => {
return Ok(None)
}
MessageError::InvalidEmptyPayload => InvalidMessage::InvalidEmptyPayload,
MessageError::MessageTooLarge => InvalidMessage::MessageTooLarge,
MessageError::InvalidContentType => InvalidMessage::InvalidContentType,
MessageError::UnknownProtocolVersion => {
InvalidMessage::UnknownProtocolVersion
}
};
return Err(self.set_err(err_kind));
}
};
// Return CCS messages and early plaintext alerts immediately without decrypting.
let end = start + rd.used();
let version_is_tls13 = matches!(negotiated_version, Some(ProtocolVersion::TLSv1_3));
let allowed_plaintext = match m.typ {
// CCS messages are always plaintext.
ContentType::ChangeCipherSpec => true,
// Alerts are allowed to be plaintext if-and-only-if:
// * The negotiated protocol version is TLS 1.3. - In TLS 1.2 it is unambiguous when
// keying changes based on the CCS message. Only TLS 1.3 requires these heuristics.
// * We have not yet decrypted any messages from the peer - if we have we don't
// expect any plaintext.
// * The payload size is indicative of a plaintext alert message.
ContentType::Alert
if version_is_tls13
&& !record_layer.has_decrypted()
&& m.payload().len() <= 2 =>
{
true
}
// In other circumstances, we expect all messages to be encrypted.
_ => false,
};
if self.joining_hs.is_none() && allowed_plaintext {
// This is unencrypted. We check the contents later.
buffer.queue_discard(end);
return Ok(Some(Deframed {
want_close_before_decrypt: false,
aligned: true,
trial_decryption_finished: false,
message: m.into_plain_message(),
}));
}
// Decrypt the encrypted message (if necessary).
let msg = match record_layer.decrypt_incoming(m) {
Ok(Some(decrypted)) => {
let Decrypted {
want_close_before_decrypt,
plaintext,
} = decrypted;
debug_assert!(!want_close_before_decrypt);
plaintext
}
// This was rejected early data, discard it. If we currently have a handshake
// payload in progress, this counts as interleaved, so we error out.
Ok(None) if self.joining_hs.is_some() => {
return Err(self.set_err(
PeerMisbehaved::RejectedEarlyDataInterleavedWithHandshakeMessage,
));
}
Ok(None) => {
buffer.queue_discard(end);
continue;
}
Err(e) => return Err(e),
};
if self.joining_hs.is_some() && msg.typ != ContentType::Handshake {
// "Handshake messages MUST NOT be interleaved with other record
// types. That is, if a handshake message is split over two or more
// records, there MUST NOT be any other records between them."
// https://www.rfc-editor.org/rfc/rfc8446#section-5.1
return Err(self.set_err(PeerMisbehaved::MessageInterleavedWithHandshakeMessage));
}
// If it's not a handshake message, just return it -- no joining necessary.
if msg.typ != ContentType::Handshake {
let end = start + rd.used();
buffer.queue_discard(end);
return Ok(Some(Deframed {
want_close_before_decrypt: false,
aligned: true,
trial_decryption_finished: false,
message: msg,
}));
}
// If we don't know the payload size yet or if the payload size is larger
// than the currently buffered payload, we need to wait for more data.
match self.append_hs::<_, false>(msg.version, &msg.payload.0, end, buffer)? {
HandshakePayloadState::Blocked => return Ok(None),
HandshakePayloadState::Complete(len) => break len,
HandshakePayloadState::Continue => continue,
}
};
let meta = self.joining_hs.as_mut().unwrap(); // safe after calling `append_hs()`
// We can now wrap the complete handshake payload in a `PlainMessage`, to be returned.
let message = PlainMessage {
typ: ContentType::Handshake,
version: meta.version,
payload: Payload::new(
buffer.filled_get(meta.payload.start..meta.payload.start + expected_len),
),
};
// But before we return, update the `joining_hs` state to skip past this payload.
if meta.payload.len() > expected_len {
// If we have another (beginning of) a handshake payload left in the buffer, update
// the payload start to point past the payload we're about to yield, and update the
// `expected_len` to match the state of that remaining payload.
meta.payload.start += expected_len;
meta.expected_len =
payload_size(buffer.filled_get(meta.payload.start..meta.payload.end))?;
} else {
// Otherwise, we've yielded the last handshake payload in the buffer, so we can
// discard all of the bytes that we're previously buffered as handshake data.
let end = meta.message.end;
self.joining_hs = None;
buffer.queue_discard(end);
}
Ok(Some(Deframed {
want_close_before_decrypt: false,
aligned: self.joining_hs.is_none(),
trial_decryption_finished: true,
message,
}))
}
/// Fuses this deframer's error and returns the set value.
///
/// Any future calls to `pop` will return `err` again.
fn set_err(&mut self, err: impl Into<Error>) -> Error {
let err = err.into();
self.last_error = Some(err.clone());
err
}
/// Allow pushing handshake messages directly into the buffer.
pub(crate) fn push(
&mut self,
version: ProtocolVersion,
payload: &[u8],
buffer: &mut DeframerVecBuffer,
) -> Result<(), Error> {
if !buffer.is_empty() && self.joining_hs.is_none() {
return Err(Error::General(
"cannot push QUIC messages into unrelated connection".into(),
));
} else if let Err(err) = buffer.prepare_read(self.joining_hs.is_some()) {
return Err(Error::General(err.into()));
}
let end = buffer.len() + payload.len();
self.append_hs::<_, true>(version, payload, end, buffer)?;
Ok(())
}
/// Write the handshake message contents into the buffer and update the metadata.
///
/// Returns true if a complete message is found.
fn append_hs<T: DeframerBuffer<QUIC>, const QUIC: bool>(
&mut self,
version: ProtocolVersion,
payload: &[u8],
end: usize,
buffer: &mut T,
) -> Result<HandshakePayloadState, Error> {
let meta = match &mut self.joining_hs {
Some(meta) => {
debug_assert_eq!(meta.quic, QUIC);
// We're joining a handshake message to the previous one here.
// Write it into the buffer and update the metadata.
DeframerBuffer::<QUIC>::copy(buffer, payload, meta.payload.end);
meta.message.end = end;
meta.payload.end += payload.len();
// If we haven't parsed the payload size yet, try to do so now.
if meta.expected_len.is_none() {
meta.expected_len =
payload_size(buffer.filled_get(meta.payload.start..meta.payload.end))?;
}
meta
}
None => {
// We've found a new handshake message here.
// Write it into the buffer and create the metadata.
let expected_len = payload_size(payload)?;
DeframerBuffer::<QUIC>::copy(buffer, payload, 0);
self.joining_hs
.insert(HandshakePayloadMeta {
message: Range { start: 0, end },
payload: Range {
start: 0,
end: payload.len(),
},
version,
expected_len,
quic: QUIC,
})
}
};
Ok(match meta.expected_len {
Some(len) if len <= meta.payload.len() => HandshakePayloadState::Complete(len),
_ => match buffer.len() > meta.message.end {
true => HandshakePayloadState::Continue,
false => HandshakePayloadState::Blocked,
},
})
}
/// Read some bytes from `rd`, and add them to our internal buffer.
#[allow(clippy::comparison_chain)]
pub fn read(
&mut self,
rd: &mut dyn io::Read,
buffer: &mut DeframerVecBuffer,
) -> io::Result<usize> {
if let Err(err) = buffer.prepare_read(self.joining_hs.is_some()) {
return Err(io::Error::new(io::ErrorKind::InvalidData, err));
}
// Try to do the largest reads possible. Note that if
// we get a message with a length field out of range here,
// we do a zero length read. That looks like an EOF to
// the next layer up, which is fine.
let new_bytes = rd.read(buffer.unfilled())?;
buffer.advance(new_bytes);
Ok(new_bytes)
}
}
#[derive(Default, Debug)]
pub struct DeframerVecBuffer {
/// Buffer of data read from the socket, in the process of being parsed into messages.
///
/// For buffer size management, checkout out the [`DeframerVecBuffer::prepare_read()`] method.
buf: Vec<u8>,
/// What size prefix of `buf` is used.
used: usize,
}
impl DeframerVecBuffer {
/// Borrows the initialized contents of this buffer and tracks pending discard operations via
/// the `discard` reference
pub fn borrow(&mut self) -> DeframerSliceBuffer {
DeframerSliceBuffer::new(&mut self.buf[..self.used])
}
/// Returns true if there are messages for the caller to process
pub fn has_pending(&self) -> bool {
!self.is_empty()
}
/// Resize the internal `buf` if necessary for reading more bytes.
fn prepare_read(&mut self, is_joining_hs: bool) -> Result<(), &'static str> {
// We allow a maximum of 64k of buffered data for handshake messages only. Enforce this
// by varying the maximum allowed buffer size here based on whether a prefix of a
// handshake payload is currently being buffered. Given that the first read of such a
// payload will only ever be 4k bytes, the next time we come around here we allow a
// larger buffer size. Once the large message and any following handshake messages in
// the same flight have been consumed, `pop()` will call `discard()` to reset `used`.
// At this point, the buffer resizing logic below should reduce the buffer size.
let allow_max = match is_joining_hs {
true => MAX_HANDSHAKE_SIZE as usize,
false => OpaqueMessage::MAX_WIRE_SIZE,
};
if self.used >= allow_max {
return Err("message buffer full");
}
// If we can and need to increase the buffer size to allow a 4k read, do so. After
// dealing with a large handshake message (exceeding `OpaqueMessage::MAX_WIRE_SIZE`),
// make sure to reduce the buffer size again (large messages should be rare).
// Also, reduce the buffer size if there are neither full nor partial messages in it,
// which usually means that the other side suspended sending data.
let need_capacity = Ord::min(allow_max, self.used + READ_SIZE);
if need_capacity > self.buf.len() {
self.buf.resize(need_capacity, 0);
} else if self.used == 0 || self.buf.len() > allow_max {
self.buf.resize(need_capacity, 0);
self.buf.shrink_to(need_capacity);
}
Ok(())
}
/// Discard `taken` bytes from the start of our buffer.
pub fn discard(&mut self, taken: usize) {
#[allow(clippy::comparison_chain)]
if taken < self.used {
/* Before:
* +----------+----------+----------+
* | taken | pending |xxxxxxxxxx|
* +----------+----------+----------+
* 0 ^ taken ^ self.used
*
* After:
* +----------+----------+----------+
* | pending |xxxxxxxxxxxxxxxxxxxxx|
* +----------+----------+----------+
* 0 ^ self.used
*/
self.buf
.copy_within(taken..self.used, 0);
self.used -= taken;
} else if taken == self.used {
self.used = 0;
}
}
fn is_empty(&self) -> bool {
self.len() == 0
}
fn advance(&mut self, num_bytes: usize) {
self.used += num_bytes;
}
fn unfilled(&mut self) -> &mut [u8] {
&mut self.buf[self.used..]
}
}
impl FilledDeframerBuffer for DeframerVecBuffer {
fn filled_mut(&mut self) -> &mut [u8] {
&mut self.buf[..self.used]
}
fn filled(&self) -> &[u8] {
&self.buf[..self.used]
}
}
impl DeframerBuffer<true> for DeframerVecBuffer {
fn copy(&mut self, src: &[u8], at: usize) {
copy_into_buffer(self.unfilled(), src, at);
self.advance(src.len());
}
}
impl DeframerBuffer<false> for DeframerVecBuffer {
fn copy(&mut self, src: &[u8], at: usize) {
self.borrow().copy(src, at)
}
}
/// A borrowed version of [`DeframerVecBuffer`] that tracks discard operations
pub struct DeframerSliceBuffer<'a> {
// a fully initialized buffer that will be deframed
buf: &'a mut [u8],
// number of bytes to discard from the front of `buf` at a later time
discard: usize,
}
impl<'a> DeframerSliceBuffer<'a> {
pub fn new(buf: &'a mut [u8]) -> Self {
Self { buf, discard: 0 }
}
/// Tracks a pending discard operation of `num_bytes`
pub fn queue_discard(&mut self, num_bytes: usize) {
self.discard += num_bytes;
}
/// Returns the number of bytes that need to be discarded
pub fn pending_discard(&self) -> usize {
self.discard
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
}
impl FilledDeframerBuffer for DeframerSliceBuffer<'_> {
fn filled_mut(&mut self) -> &mut [u8] {
&mut self.buf[self.discard..]
}
fn filled(&self) -> &[u8] {
&self.buf[self.discard..]
}
}
impl DeframerBuffer<false> for DeframerSliceBuffer<'_> {
fn copy(&mut self, src: &[u8], at: usize) {
copy_into_buffer(self.filled_mut(), src, at)
}
}
trait DeframerBuffer<const QUIC: bool>: FilledDeframerBuffer {
/// Copies from the `src` buffer into this buffer at the requested index
///
/// If `QUIC` is true the data will be copied into the *un*filled section of the buffer
///
/// If `QUIC` is false the data will be copied into the filled section of the buffer
fn copy(&mut self, src: &[u8], at: usize);
}
fn copy_into_buffer(buf: &mut [u8], src: &[u8], at: usize) {
buf[at..at + src.len()].copy_from_slice(src);
}
trait FilledDeframerBuffer {
fn filled_mut(&mut self) -> &mut [u8];
fn filled_get<I>(&self, index: I) -> &I::Output
where
I: SliceIndex<[u8]>,
{
self.filled().get(index).unwrap()
}
fn len(&self) -> usize {
self.filled().len()
}
fn filled(&self) -> &[u8];
}
enum HandshakePayloadState {
/// Waiting for more data.
Blocked,
/// We have a complete handshake message.
Complete(usize),
/// More records available for processing.
Continue,
}
struct HandshakePayloadMeta {
/// The range of bytes from the deframer buffer that contains data processed so far.
///
/// This will need to be discarded as the last of the handshake message is `pop()`ped.
message: Range<usize>,
/// The range of bytes from the deframer buffer that contains payload.
payload: Range<usize>,
/// The protocol version as found in the decrypted handshake message.
version: ProtocolVersion,
/// The expected size of the handshake payload, if available.
///
/// If the received payload exceeds 4 bytes (the handshake payload header), we update
/// `expected_len` to contain the payload length as advertised (at most 16_777_215 bytes).
expected_len: Option<usize>,
/// True if this is a QUIC handshake message.
///
/// In the case of QUIC, we get a plaintext handshake data directly from the CRYPTO stream,
/// so there's no need to unwrap and decrypt the outer TLS record. This is implemented
/// by directly calling `MessageDeframer::push()` from the connection.
quic: bool,
}
/// Determine the expected length of the payload as advertised in the header.
///
/// Returns `Err` if the advertised length is larger than what we want to accept
/// (`MAX_HANDSHAKE_SIZE`), `Ok(None)` if the buffer is too small to contain a complete header,
/// and `Ok(Some(len))` otherwise.
fn payload_size(buf: &[u8]) -> Result<Option<usize>, Error> {
if buf.len() < HEADER_SIZE {
return Ok(None);
}
let (header, _) = buf.split_at(HEADER_SIZE);
match codec::u24::read_bytes(&header[1..]) {
Ok(len) if len.0 > MAX_HANDSHAKE_SIZE => Err(Error::InvalidMessage(
InvalidMessage::HandshakePayloadTooLarge,
)),
Ok(len) => Ok(Some(HEADER_SIZE + usize::from(len))),
_ => Ok(None),
}
}
#[derive(Debug)]
pub struct Deframed {
pub(crate) want_close_before_decrypt: bool,
pub(crate) aligned: bool,
pub(crate) trial_decryption_finished: bool,
pub message: PlainMessage,
}
const HEADER_SIZE: usize = 1 + 3;
/// TLS allows for handshake messages of up to 16MB. We
/// restrict that to 64KB to limit potential for denial-of-
/// service.
const MAX_HANDSHAKE_SIZE: u32 = 0xffff;
const READ_SIZE: usize = 4096;
#[cfg(test)]
mod tests {
use std::prelude::v1::*;
use std::vec;
use crate::msgs::message::Message;
use super::*;
#[test]
fn check_incremental() {
let mut d = BufferedDeframer::default();
assert!(!d.has_pending());
input_whole_incremental(&mut d, FIRST_MESSAGE);
assert!(d.has_pending());
let mut rl = RecordLayer::new();
pop_first(&mut d, &mut rl);
assert!(!d.has_pending());
assert!(d.last_error.is_none());
}
#[test]
fn check_incremental_2() {
let mut d = BufferedDeframer::default();
assert!(!d.has_pending());
input_whole_incremental(&mut d, FIRST_MESSAGE);
assert!(d.has_pending());
input_whole_incremental(&mut d, SECOND_MESSAGE);
assert!(d.has_pending());
let mut rl = RecordLayer::new();
pop_first(&mut d, &mut rl);
assert!(d.has_pending());
pop_second(&mut d, &mut rl);
assert!(!d.has_pending());
assert!(d.last_error.is_none());
}
#[test]
fn check_whole() {
let mut d = BufferedDeframer::default();
assert!(!d.has_pending());
assert_len(FIRST_MESSAGE.len(), d.input_bytes(FIRST_MESSAGE));
assert!(d.has_pending());
let mut rl = RecordLayer::new();
pop_first(&mut d, &mut rl);
assert!(!d.has_pending());
assert!(d.last_error.is_none());
}
#[test]
fn check_whole_2() {
let mut d = BufferedDeframer::default();
assert!(!d.has_pending());
assert_len(FIRST_MESSAGE.len(), d.input_bytes(FIRST_MESSAGE));
assert_len(SECOND_MESSAGE.len(), d.input_bytes(SECOND_MESSAGE));
let mut rl = RecordLayer::new();
pop_first(&mut d, &mut rl);
pop_second(&mut d, &mut rl);
assert!(!d.has_pending());
assert!(d.last_error.is_none());
}
#[test]
fn test_two_in_one_read() {
let mut d = BufferedDeframer::default();
assert!(!d.has_pending());
assert_len(
FIRST_MESSAGE.len() + SECOND_MESSAGE.len(),
d.input_bytes_concat(FIRST_MESSAGE, SECOND_MESSAGE),
);
let mut rl = RecordLayer::new();
pop_first(&mut d, &mut rl);
pop_second(&mut d, &mut rl);
assert!(!d.has_pending());
assert!(d.last_error.is_none());
}
#[test]
fn test_two_in_one_read_shortest_first() {
let mut d = BufferedDeframer::default();
assert!(!d.has_pending());
assert_len(
FIRST_MESSAGE.len() + SECOND_MESSAGE.len(),
d.input_bytes_concat(SECOND_MESSAGE, FIRST_MESSAGE),
);
let mut rl = RecordLayer::new();
pop_second(&mut d, &mut rl);
pop_first(&mut d, &mut rl);
assert!(!d.has_pending());
assert!(d.last_error.is_none());
}
#[test]
fn test_incremental_with_nonfatal_read_error() {
let mut d = BufferedDeframer::default();
assert_len(3, d.input_bytes(&FIRST_MESSAGE[..3]));
input_error(&mut d);
assert_len(FIRST_MESSAGE.len() - 3, d.input_bytes(&FIRST_MESSAGE[3..]));
let mut rl = RecordLayer::new();
pop_first(&mut d, &mut rl);
assert!(!d.has_pending());
assert!(d.last_error.is_none());
}
#[test]
fn test_invalid_contenttype_errors() {
let mut d = BufferedDeframer::default();
assert_len(
INVALID_CONTENTTYPE_MESSAGE.len(),
d.input_bytes(INVALID_CONTENTTYPE_MESSAGE),
);
let mut rl = RecordLayer::new();
assert_eq!(
d.pop(&mut rl, None).unwrap_err(),
Error::InvalidMessage(InvalidMessage::InvalidContentType)
);
}
#[test]
fn test_invalid_version_errors() {
let mut d = BufferedDeframer::default();
assert_len(
INVALID_VERSION_MESSAGE.len(),
d.input_bytes(INVALID_VERSION_MESSAGE),
);
let mut rl = RecordLayer::new();
assert_eq!(
d.pop(&mut rl, None).unwrap_err(),
Error::InvalidMessage(InvalidMessage::UnknownProtocolVersion)
);
}
#[test]
fn test_invalid_length_errors() {
let mut d = BufferedDeframer::default();
assert_len(
INVALID_LENGTH_MESSAGE.len(),
d.input_bytes(INVALID_LENGTH_MESSAGE),
);
let mut rl = RecordLayer::new();
assert_eq!(
d.pop(&mut rl, None).unwrap_err(),
Error::InvalidMessage(InvalidMessage::MessageTooLarge)
);
}
#[test]
fn test_empty_applicationdata() {
let mut d = BufferedDeframer::default();
assert_len(
EMPTY_APPLICATIONDATA_MESSAGE.len(),
d.input_bytes(EMPTY_APPLICATIONDATA_MESSAGE),
);
let mut rl = RecordLayer::new();
let m = d
.pop(&mut rl, None)
.unwrap()
.unwrap()
.message;
assert_eq!(m.typ, ContentType::ApplicationData);
assert_eq!(m.payload.0.len(), 0);
assert!(!d.has_pending());
assert!(d.last_error.is_none());
}
#[test]
fn test_invalid_empty_errors() {
let mut d = BufferedDeframer::default();
assert_len(
INVALID_EMPTY_MESSAGE.len(),
d.input_bytes(INVALID_EMPTY_MESSAGE),
);
let mut rl = RecordLayer::new();
assert_eq!(
d.pop(&mut rl, None).unwrap_err(),
Error::InvalidMessage(InvalidMessage::InvalidEmptyPayload)
);
// CorruptMessage has been fused
assert_eq!(
d.pop(&mut rl, None).unwrap_err(),
Error::InvalidMessage(InvalidMessage::InvalidEmptyPayload)
);
}
#[test]
fn test_limited_buffer() {
const PAYLOAD_LEN: usize = 16_384;
let mut message = Vec::with_capacity(16_389);
message.push(0x17); // ApplicationData
message.extend(&[0x03, 0x04]); // ProtocolVersion
message.extend((PAYLOAD_LEN as u16).to_be_bytes()); // payload length
message.extend(&[0; PAYLOAD_LEN]);
let mut d = BufferedDeframer::default();
assert_len(4096, d.input_bytes(&message));
assert_len(4096, d.input_bytes(&message));
assert_len(4096, d.input_bytes(&message));
assert_len(4096, d.input_bytes(&message));
assert_len(
OpaqueMessage::MAX_WIRE_SIZE - 16_384,
d.input_bytes(&message),
);
assert!(d.input_bytes(&message).is_err());
}
fn input_error(d: &mut BufferedDeframer) {
let error = io::Error::from(io::ErrorKind::TimedOut);
let mut rd = ErrorRead::new(error);
d.read(&mut rd)
.expect_err("error not propagated");
}
fn input_whole_incremental(d: &mut BufferedDeframer, bytes: &[u8]) {
let before = d.buffer.len();
for i in 0..bytes.len() {
assert_len(1, d.input_bytes(&bytes[i..i + 1]));
assert!(d.has_pending());
}
assert_eq!(before + bytes.len(), d.buffer.len());
}
fn pop_first(d: &mut BufferedDeframer, rl: &mut RecordLayer) {
let m = d
.pop(rl, None)
.unwrap()
.unwrap()
.message;
assert_eq!(m.typ, ContentType::Handshake);
Message::try_from(m).unwrap();
}
fn pop_second(d: &mut BufferedDeframer, rl: &mut RecordLayer) {
let m = d
.pop(rl, None)
.unwrap()
.unwrap()
.message;
assert_eq!(m.typ, ContentType::Alert);
Message::try_from(m).unwrap();
}
// buffered version to ease testing
#[derive(Default)]
struct BufferedDeframer {
inner: MessageDeframer,
buffer: DeframerVecBuffer,
}
impl BufferedDeframer {
fn input_bytes(&mut self, bytes: &[u8]) -> io::Result<usize> {
let mut rd = io::Cursor::new(bytes);
self.read(&mut rd)
}
fn input_bytes_concat(&mut self, bytes1: &[u8], bytes2: &[u8]) -> io::Result<usize> {
let mut bytes = vec![0u8; bytes1.len() + bytes2.len()];
bytes[..bytes1.len()].clone_from_slice(bytes1);
bytes[bytes1.len()..].clone_from_slice(bytes2);
let mut rd = io::Cursor::new(&bytes);
self.read(&mut rd)
}
fn pop(
&mut self,
record_layer: &mut RecordLayer,
negotiated_version: Option<ProtocolVersion>,
) -> Result<Option<Deframed>, Error> {
let mut deframer_buffer = self.buffer.borrow();
let res = self
.inner
.pop(record_layer, negotiated_version, &mut deframer_buffer);
let discard = deframer_buffer.pending_discard();
self.buffer.discard(discard);
res
}
fn read(&mut self, rd: &mut dyn io::Read) -> io::Result<usize> {
self.inner.read(rd, &mut self.buffer)
}
fn has_pending(&self) -> bool {
self.buffer.has_pending()
}
}
// grant access to the `MessageDeframer.last_error` field
impl core::ops::Deref for BufferedDeframer {
type Target = MessageDeframer;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
struct ErrorRead {
error: Option<io::Error>,
}
impl ErrorRead {
fn new(error: io::Error) -> Self {
Self { error: Some(error) }
}
}
impl io::Read for ErrorRead {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
for (i, b) in buf.iter_mut().enumerate() {
*b = i as u8;
}
let error = self.error.take().unwrap();
Err(error)
}
}
fn assert_len(want: usize, got: io::Result<usize>) {
assert_eq!(Some(want), got.ok())
}
const FIRST_MESSAGE: &[u8] = include_bytes!("../testdata/deframer-test.1.bin");
const SECOND_MESSAGE: &[u8] = include_bytes!("../testdata/deframer-test.2.bin");
const EMPTY_APPLICATIONDATA_MESSAGE: &[u8] =
include_bytes!("../testdata/deframer-empty-applicationdata.bin");
const INVALID_EMPTY_MESSAGE: &[u8] = include_bytes!("../testdata/deframer-invalid-empty.bin");
const INVALID_CONTENTTYPE_MESSAGE: &[u8] =
include_bytes!("../testdata/deframer-invalid-contenttype.bin");
const INVALID_VERSION_MESSAGE: &[u8] =
include_bytes!("../testdata/deframer-invalid-version.bin");
const INVALID_LENGTH_MESSAGE: &[u8] = include_bytes!("../testdata/deframer-invalid-length.bin");
}