rustls/
stream.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
use crate::conn::{ConnectionCommon, SideData};

use core::ops::{Deref, DerefMut};
use std::io::{IoSlice, Read, Result, Write};

/// This type implements `io::Read` and `io::Write`, encapsulating
/// a Connection `C` and an underlying transport `T`, such as a socket.
///
/// This allows you to use a rustls Connection like a normal stream.
#[derive(Debug)]
pub struct Stream<'a, C: 'a + ?Sized, T: 'a + Read + Write + ?Sized> {
    /// Our TLS connection
    pub conn: &'a mut C,

    /// The underlying transport, like a socket
    pub sock: &'a mut T,
}

impl<'a, C, T, S> Stream<'a, C, T>
where
    C: 'a + DerefMut + Deref<Target = ConnectionCommon<S>>,
    T: 'a + Read + Write,
    S: SideData,
{
    /// Make a new Stream using the Connection `conn` and socket-like object
    /// `sock`.  This does not fail and does no IO.
    pub fn new(conn: &'a mut C, sock: &'a mut T) -> Self {
        Self { conn, sock }
    }

    /// If we're handshaking, complete all the IO for that.
    /// If we have data to write, write it all.
    fn complete_prior_io(&mut self) -> Result<()> {
        if self.conn.is_handshaking() {
            self.conn.complete_io(self.sock)?;
        }

        if self.conn.wants_write() {
            self.conn.complete_io(self.sock)?;
        }

        Ok(())
    }
}

impl<'a, C, T, S> Read for Stream<'a, C, T>
where
    C: 'a + DerefMut + Deref<Target = ConnectionCommon<S>>,
    T: 'a + Read + Write,
    S: SideData,
{
    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
        self.complete_prior_io()?;

        // We call complete_io() in a loop since a single call may read only
        // a partial packet from the underlying transport. A full packet is
        // needed to get more plaintext, which we must do if EOF has not been
        // hit.
        while self.conn.wants_read() {
            if self.conn.complete_io(self.sock)?.0 == 0 {
                break;
            }
        }

        self.conn.reader().read(buf)
    }

    #[cfg(read_buf)]
    fn read_buf(&mut self, cursor: core::io::BorrowedCursor<'_>) -> Result<()> {
        self.complete_prior_io()?;

        // We call complete_io() in a loop since a single call may read only
        // a partial packet from the underlying transport. A full packet is
        // needed to get more plaintext, which we must do if EOF has not been
        // hit.
        while self.conn.wants_read() {
            if self.conn.complete_io(self.sock)?.0 == 0 {
                break;
            }
        }

        self.conn.reader().read_buf(cursor)
    }
}

impl<'a, C, T, S> Write for Stream<'a, C, T>
where
    C: 'a + DerefMut + Deref<Target = ConnectionCommon<S>>,
    T: 'a + Read + Write,
    S: SideData,
{
    fn write(&mut self, buf: &[u8]) -> Result<usize> {
        self.complete_prior_io()?;

        let len = self.conn.writer().write(buf)?;

        // Try to write the underlying transport here, but don't let
        // any errors mask the fact we've consumed `len` bytes.
        // Callers will learn of permanent errors on the next call.
        let _ = self.conn.complete_io(self.sock);

        Ok(len)
    }

    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
        self.complete_prior_io()?;

        let len = self
            .conn
            .writer()
            .write_vectored(bufs)?;

        // Try to write the underlying transport here, but don't let
        // any errors mask the fact we've consumed `len` bytes.
        // Callers will learn of permanent errors on the next call.
        let _ = self.conn.complete_io(self.sock);

        Ok(len)
    }

    fn flush(&mut self) -> Result<()> {
        self.complete_prior_io()?;

        self.conn.writer().flush()?;
        if self.conn.wants_write() {
            self.conn.complete_io(self.sock)?;
        }
        Ok(())
    }
}

/// This type implements `io::Read` and `io::Write`, encapsulating
/// and owning a Connection `C` and an underlying blocking transport
/// `T`, such as a socket.
///
/// This allows you to use a rustls Connection like a normal stream.
#[derive(Debug)]
pub struct StreamOwned<C: Sized, T: Read + Write + Sized> {
    /// Our connection
    pub conn: C,

    /// The underlying transport, like a socket
    pub sock: T,
}

impl<C, T, S> StreamOwned<C, T>
where
    C: DerefMut + Deref<Target = ConnectionCommon<S>>,
    T: Read + Write,
    S: SideData,
{
    /// Make a new StreamOwned taking the Connection `conn` and socket-like
    /// object `sock`.  This does not fail and does no IO.
    ///
    /// This is the same as `Stream::new` except `conn` and `sock` are
    /// moved into the StreamOwned.
    pub fn new(conn: C, sock: T) -> Self {
        Self { conn, sock }
    }

    /// Get a reference to the underlying socket
    pub fn get_ref(&self) -> &T {
        &self.sock
    }

    /// Get a mutable reference to the underlying socket
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.sock
    }

    /// Extract the `conn` and `sock` parts from the `StreamOwned`
    pub fn into_parts(self) -> (C, T) {
        (self.conn, self.sock)
    }
}

impl<'a, C, T, S> StreamOwned<C, T>
where
    C: DerefMut + Deref<Target = ConnectionCommon<S>>,
    T: Read + Write,
    S: SideData,
{
    fn as_stream(&'a mut self) -> Stream<'a, C, T> {
        Stream {
            conn: &mut self.conn,
            sock: &mut self.sock,
        }
    }
}

impl<C, T, S> Read for StreamOwned<C, T>
where
    C: DerefMut + Deref<Target = ConnectionCommon<S>>,
    T: Read + Write,
    S: SideData,
{
    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
        self.as_stream().read(buf)
    }

    #[cfg(read_buf)]
    fn read_buf(&mut self, cursor: core::io::BorrowedCursor<'_>) -> Result<()> {
        self.as_stream().read_buf(cursor)
    }
}

impl<C, T, S> Write for StreamOwned<C, T>
where
    C: DerefMut + Deref<Target = ConnectionCommon<S>>,
    T: Read + Write,
    S: SideData,
{
    fn write(&mut self, buf: &[u8]) -> Result<usize> {
        self.as_stream().write(buf)
    }

    fn flush(&mut self) -> Result<()> {
        self.as_stream().flush()
    }
}

#[cfg(test)]
mod tests {
    use super::{Stream, StreamOwned};
    use crate::client::ClientConnection;
    use crate::server::ServerConnection;
    use std::net::TcpStream;

    #[test]
    fn stream_can_be_created_for_connection_and_tcpstream() {
        type _Test<'a> = Stream<'a, ClientConnection, TcpStream>;
    }

    #[test]
    fn streamowned_can_be_created_for_client_and_tcpstream() {
        type _Test = StreamOwned<ClientConnection, TcpStream>;
    }

    #[test]
    fn streamowned_can_be_created_for_server_and_tcpstream() {
        type _Test = StreamOwned<ServerConnection, TcpStream>;
    }
}