rustls_pki_types/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
//! This crate provides types for representing X.509 certificates, keys and other types as
//! commonly used in the rustls ecosystem. It is intended to be used by crates that need to work
//! with such X.509 types, such as [rustls](https://crates.io/crates/rustls),
//! [rustls-webpki](https://crates.io/crates/rustls-webpki),
//! [rustls-pemfile](https://crates.io/crates/rustls-pemfile), and others.
//!
//! Some of these crates used to define their own trivial wrappers around DER-encoded bytes.
//! However, in order to avoid inconvenient dependency edges, these were all disconnected. By
//! using a common low-level crate of types with long-term stable API, we hope to avoid the
//! downsides of unnecessary dependency edges while providing good interoperability between crates.
//!
//! ## DER and PEM
//!
//! Many of the types defined in this crate represent DER-encoded data. DER is a binary encoding of
//! the ASN.1 format commonly used in web PKI specifications. It is a binary encoding, so it is
//! relatively compact when stored in memory. However, as a binary format, it is not very easy to
//! work with for humans and in contexts where binary data is inconvenient. For this reason,
//! many tools and protocols use a ASCII-based encoding of DER, called PEM. In addition to the
//! base64-encoded DER, PEM objects are delimited by header and footer lines which indicate the type
//! of object contained in the PEM blob.
//!
//! The [rustls-pemfile](https://docs.rs/rustls-pemfile) crate can be used to parse PEM files.
//!
//! ## Creating new certificates and keys
//!
//! This crate does not provide any functionality for creating new certificates or keys. However,
//! the [rcgen](https://docs.rs/rcgen) crate can be used to create new certificates and keys.
//!
//! ## Cloning private keys
//!
//! This crate intentionally **does not** implement `Clone` on private key types in
//! order to minimize the exposure of private key data in memory.
//!
//! If you want to extend the lifetime of a `PrivateKeyDer<'_>`, consider [`PrivateKeyDer::clone_key()`].
//! Alternatively since these types are immutable, consider wrapping the `PrivateKeyDer<'_>` in a [`Rc`]
//! or an [`Arc`].
//!
//! [`Rc`]: https://doc.rust-lang.org/std/rc/struct.Rc.html
//! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
//! [`PrivateKeyDer::clone_key()`]: https://docs.rs/rustls-pki-types/latest/rustls_pki_types/enum.PrivateKeyDer.html#method.clone_key
//!
//! ## Target `wasm32-unknown-unknown` with the `web` feature
//!
//! [`std::time::SystemTime`](https://doc.rust-lang.org/std/time/struct.SystemTime.html)
//! is unavailable in `wasm32-unknown-unknown` targets, so calls to
//! [`UnixTime::now()`](https://docs.rs/rustls-pki-types/latest/rustls_pki_types/struct.UnixTime.html#method.now),
//! otherwise enabled by the [`std`](https://docs.rs/crate/rustls-pki-types/latest/features#std) feature,
//! require building instead with the [`web`](https://docs.rs/crate/rustls-pki-types/latest/features#web)
//! feature. It gets time by calling [`Date.now()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now)
//! in the browser.
#![cfg_attr(not(feature = "std"), no_std)]
#![warn(unreachable_pub, clippy::use_self)]
#![deny(missing_docs)]
#![cfg_attr(docsrs, feature(doc_cfg, doc_auto_cfg))]
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use core::fmt;
use core::ops::Deref;
use core::time::Duration;
#[cfg(all(
feature = "std",
not(all(target_family = "wasm", target_os = "unknown"))
))]
use std::time::SystemTime;
#[cfg(all(target_family = "wasm", target_os = "unknown", feature = "web"))]
use web_time::SystemTime;
mod server_name;
pub use server_name::{
AddrParseError, DnsName, InvalidDnsNameError, IpAddr, Ipv4Addr, Ipv6Addr, ServerName,
};
/// A DER-encoded X.509 private key, in one of several formats
///
/// See variant inner types for more detailed information.
#[non_exhaustive]
#[derive(Debug, PartialEq, Eq)]
pub enum PrivateKeyDer<'a> {
/// An RSA private key
Pkcs1(PrivatePkcs1KeyDer<'a>),
/// A Sec1 private key
Sec1(PrivateSec1KeyDer<'a>),
/// A PKCS#8 private key
Pkcs8(PrivatePkcs8KeyDer<'a>),
}
impl<'a> PrivateKeyDer<'a> {
/// Clone the private key to a `'static` value
#[cfg(feature = "alloc")]
pub fn clone_key(&self) -> PrivateKeyDer<'static> {
use PrivateKeyDer::*;
match self {
Pkcs1(key) => Pkcs1(key.clone_key()),
Sec1(key) => Sec1(key.clone_key()),
Pkcs8(key) => Pkcs8(key.clone_key()),
}
}
/// Yield the DER-encoded bytes of the private key
pub fn secret_der(&self) -> &[u8] {
match self {
PrivateKeyDer::Pkcs1(key) => key.secret_pkcs1_der(),
PrivateKeyDer::Sec1(key) => key.secret_sec1_der(),
PrivateKeyDer::Pkcs8(key) => key.secret_pkcs8_der(),
}
}
}
impl<'a> From<PrivatePkcs1KeyDer<'a>> for PrivateKeyDer<'a> {
fn from(key: PrivatePkcs1KeyDer<'a>) -> Self {
Self::Pkcs1(key)
}
}
impl<'a> From<PrivateSec1KeyDer<'a>> for PrivateKeyDer<'a> {
fn from(key: PrivateSec1KeyDer<'a>) -> Self {
Self::Sec1(key)
}
}
impl<'a> From<PrivatePkcs8KeyDer<'a>> for PrivateKeyDer<'a> {
fn from(key: PrivatePkcs8KeyDer<'a>) -> Self {
Self::Pkcs8(key)
}
}
impl<'a> TryFrom<&'a [u8]> for PrivateKeyDer<'a> {
type Error = &'static str;
fn try_from(key: &'a [u8]) -> Result<Self, Self::Error> {
const SHORT_FORM_LEN_MAX: u8 = 128;
const TAG_SEQUENCE: u8 = 0x30;
const TAG_INTEGER: u8 = 0x02;
// We expect all key formats to begin with a SEQUENCE, which requires at least 2 bytes
// in the short length encoding.
if key.first() != Some(&TAG_SEQUENCE) || key.len() < 2 {
return Err(INVALID_KEY_DER_ERR);
}
// The length of the SEQUENCE is encoded in the second byte. We must skip this many bytes.
let skip_len = match key[1] >= SHORT_FORM_LEN_MAX {
// 1 byte for SEQUENCE tag, 1 byte for short-form len
false => 2,
// 1 byte for SEQUENCE tag, 1 byte for start of len, remaining bytes encoded
// in key[1].
true => 2 + (key[1] - SHORT_FORM_LEN_MAX) as usize,
};
let key_bytes = key.get(skip_len..).ok_or(INVALID_KEY_DER_ERR)?;
// PKCS#8 (https://www.rfc-editor.org/rfc/rfc5208) describes the PrivateKeyInfo
// structure as:
// PrivateKeyInfo ::= SEQUENCE {
// version Version,
// privateKeyAlgorithm AlgorithmIdentifier {{PrivateKeyAlgorithms}},
// privateKey PrivateKey,
// attributes [0] Attributes OPTIONAL
// }
// PKCS#5 (https://www.rfc-editor.org/rfc/rfc8018) describes the AlgorithmIdentifier
// as a SEQUENCE.
//
// Therefore, we consider the outer SEQUENCE, a version number, and the start of
// an AlgorithmIdentifier to be enough to identify a PKCS#8 key. If it were PKCS#1 or SEC1
// the version would not be followed by a SEQUENCE.
if matches!(key_bytes, [TAG_INTEGER, 0x01, _, TAG_SEQUENCE, ..]) {
return Ok(Self::Pkcs8(key.into()));
}
// PKCS#1 (https://www.rfc-editor.org/rfc/rfc8017) describes the RSAPrivateKey structure
// as:
// RSAPrivateKey ::= SEQUENCE {
// version Version,
// modulus INTEGER, -- n
// publicExponent INTEGER, -- e
// privateExponent INTEGER, -- d
// prime1 INTEGER, -- p
// prime2 INTEGER, -- q
// exponent1 INTEGER, -- d mod (p-1)
// exponent2 INTEGER, -- d mod (q-1)
// coefficient INTEGER, -- (inverse of q) mod p
// otherPrimeInfos OtherPrimeInfos OPTIONAL
// }
//
// Therefore, we consider the outer SEQUENCE and a Version of 0 to be enough to identify
// a PKCS#1 key. If it were PKCS#8, the version would be followed by a SEQUENCE. If it
// were SEC1, the VERSION would have been 1.
if key_bytes.starts_with(&[TAG_INTEGER, 0x01, 0x00]) {
return Ok(Self::Pkcs1(key.into()));
}
// SEC1 (https://www.rfc-editor.org/rfc/rfc5915) describes the ECPrivateKey structure as:
// ECPrivateKey ::= SEQUENCE {
// version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
// privateKey OCTET STRING,
// parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
// publicKey [1] BIT STRING OPTIONAL
// }
//
// Therefore, we consider the outer SEQUENCE and an INTEGER of 1 to be enough to
// identify a SEC1 key. If it were PKCS#8 or PKCS#1, the version would have been 0.
if key_bytes.starts_with(&[TAG_INTEGER, 0x01, 0x01]) {
return Ok(Self::Sec1(key.into()));
}
Err(INVALID_KEY_DER_ERR)
}
}
static INVALID_KEY_DER_ERR: &str = "unknown or invalid key format";
#[cfg(feature = "alloc")]
impl<'a> TryFrom<Vec<u8>> for PrivateKeyDer<'a> {
type Error = &'static str;
fn try_from(key: Vec<u8>) -> Result<Self, Self::Error> {
Ok(match PrivateKeyDer::try_from(&key[..])? {
PrivateKeyDer::Pkcs1(_) => Self::Pkcs1(key.into()),
PrivateKeyDer::Sec1(_) => Self::Sec1(key.into()),
PrivateKeyDer::Pkcs8(_) => Self::Pkcs8(key.into()),
})
}
}
/// A DER-encoded plaintext RSA private key; as specified in PKCS#1/RFC 3447
///
/// RSA private keys are identified in PEM context as `RSA PRIVATE KEY` and when stored in a
/// file usually use a `.pem` or `.key` extension. For more on PEM files, refer to the crate
/// documentation.
#[derive(PartialEq, Eq)]
pub struct PrivatePkcs1KeyDer<'a>(Der<'a>);
impl PrivatePkcs1KeyDer<'_> {
/// Clone the private key to a `'static` value
#[cfg(feature = "alloc")]
pub fn clone_key(&self) -> PrivatePkcs1KeyDer<'static> {
PrivatePkcs1KeyDer::from(self.0.as_ref().to_vec())
}
/// Yield the DER-encoded bytes of the private key
pub fn secret_pkcs1_der(&self) -> &[u8] {
self.0.as_ref()
}
}
impl<'a> From<&'a [u8]> for PrivatePkcs1KeyDer<'a> {
fn from(slice: &'a [u8]) -> Self {
Self(Der(BytesInner::Borrowed(slice)))
}
}
#[cfg(feature = "alloc")]
impl<'a> From<Vec<u8>> for PrivatePkcs1KeyDer<'a> {
fn from(vec: Vec<u8>) -> Self {
Self(Der(BytesInner::Owned(vec)))
}
}
impl fmt::Debug for PrivatePkcs1KeyDer<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("PrivatePkcs1KeyDer")
.field(&"[secret key elided]")
.finish()
}
}
/// A Sec1-encoded plaintext private key; as specified in RFC 5915
///
/// Sec1 private keys are identified in PEM context as `EC PRIVATE KEY` and when stored in a
/// file usually use a `.pem` or `.key` extension. For more on PEM files, refer to the crate
/// documentation.
#[derive(PartialEq, Eq)]
pub struct PrivateSec1KeyDer<'a>(Der<'a>);
impl PrivateSec1KeyDer<'_> {
/// Clone the private key to a `'static` value
#[cfg(feature = "alloc")]
pub fn clone_key(&self) -> PrivateSec1KeyDer<'static> {
PrivateSec1KeyDer::from(self.0.as_ref().to_vec())
}
/// Yield the DER-encoded bytes of the private key
pub fn secret_sec1_der(&self) -> &[u8] {
self.0.as_ref()
}
}
impl<'a> From<&'a [u8]> for PrivateSec1KeyDer<'a> {
fn from(slice: &'a [u8]) -> Self {
Self(Der(BytesInner::Borrowed(slice)))
}
}
#[cfg(feature = "alloc")]
impl<'a> From<Vec<u8>> for PrivateSec1KeyDer<'a> {
fn from(vec: Vec<u8>) -> Self {
Self(Der(BytesInner::Owned(vec)))
}
}
impl fmt::Debug for PrivateSec1KeyDer<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("PrivateSec1KeyDer")
.field(&"[secret key elided]")
.finish()
}
}
/// A DER-encoded plaintext private key; as specified in PKCS#8/RFC 5958
///
/// PKCS#8 private keys are identified in PEM context as `PRIVATE KEY` and when stored in a
/// file usually use a `.pem` or `.key` extension. For more on PEM files, refer to the crate
/// documentation.
#[derive(PartialEq, Eq)]
pub struct PrivatePkcs8KeyDer<'a>(Der<'a>);
impl PrivatePkcs8KeyDer<'_> {
/// Clone the private key to a `'static` value
#[cfg(feature = "alloc")]
pub fn clone_key(&self) -> PrivatePkcs8KeyDer<'static> {
PrivatePkcs8KeyDer::from(self.0.as_ref().to_vec())
}
/// Yield the DER-encoded bytes of the private key
pub fn secret_pkcs8_der(&self) -> &[u8] {
self.0.as_ref()
}
}
impl<'a> From<&'a [u8]> for PrivatePkcs8KeyDer<'a> {
fn from(slice: &'a [u8]) -> Self {
Self(Der(BytesInner::Borrowed(slice)))
}
}
#[cfg(feature = "alloc")]
impl<'a> From<Vec<u8>> for PrivatePkcs8KeyDer<'a> {
fn from(vec: Vec<u8>) -> Self {
Self(Der(BytesInner::Owned(vec)))
}
}
impl fmt::Debug for PrivatePkcs8KeyDer<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("PrivatePkcs8KeyDer")
.field(&"[secret key elided]")
.finish()
}
}
/// A trust anchor (a.k.a. root CA)
///
/// Traditionally, certificate verification libraries have represented trust anchors as full X.509
/// root certificates. However, those certificates contain a lot more data than is needed for
/// verifying certificates. The [`TrustAnchor`] representation allows an application to store
/// just the essential elements of trust anchors.
///
/// The most common way to get one of these is to call [`rustls_webpki::anchor_from_trusted_cert()`].
///
/// [`rustls_webpki::anchor_from_trusted_cert()`]: https://docs.rs/rustls-webpki/latest/webpki/fn.anchor_from_trusted_cert.html
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct TrustAnchor<'a> {
/// Value of the `subject` field of the trust anchor
pub subject: Der<'a>,
/// Value of the `subjectPublicKeyInfo` field of the trust anchor
pub subject_public_key_info: Der<'a>,
/// Value of DER-encoded `NameConstraints`, containing name constraints to the trust anchor, if any
pub name_constraints: Option<Der<'a>>,
}
impl TrustAnchor<'_> {
/// Yield a `'static` lifetime of the `TrustAnchor` by allocating owned `Der` variants
#[cfg(feature = "alloc")]
pub fn to_owned(&self) -> TrustAnchor<'static> {
#[cfg(not(feature = "std"))]
use alloc::borrow::ToOwned;
TrustAnchor {
subject: self.subject.as_ref().to_owned().into(),
subject_public_key_info: self.subject_public_key_info.as_ref().to_owned().into(),
name_constraints: self
.name_constraints
.as_ref()
.map(|nc| nc.as_ref().to_owned().into()),
}
}
}
/// A Certificate Revocation List; as specified in RFC 5280
///
/// Certificate revocation lists are identified in PEM context as `X509 CRL` and when stored in a
/// file usually use a `.crl` extension. For more on PEM files, refer to the crate documentation.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct CertificateRevocationListDer<'a>(Der<'a>);
impl AsRef<[u8]> for CertificateRevocationListDer<'_> {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl Deref for CertificateRevocationListDer<'_> {
type Target = [u8];
fn deref(&self) -> &Self::Target {
self.as_ref()
}
}
impl<'a> From<&'a [u8]> for CertificateRevocationListDer<'a> {
fn from(slice: &'a [u8]) -> Self {
Self(Der::from(slice))
}
}
#[cfg(feature = "alloc")]
impl<'a> From<Vec<u8>> for CertificateRevocationListDer<'a> {
fn from(vec: Vec<u8>) -> Self {
Self(Der::from(vec))
}
}
/// A Certificate Signing Request; as specified in RFC 2986
///
/// Certificate signing requests are identified in PEM context as `CERTIFICATE REQUEST` and when stored in a
/// file usually use a `.csr` extension. For more on PEM files, refer to the crate documentation.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct CertificateSigningRequestDer<'a>(Der<'a>);
impl AsRef<[u8]> for CertificateSigningRequestDer<'_> {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl Deref for CertificateSigningRequestDer<'_> {
type Target = [u8];
fn deref(&self) -> &Self::Target {
self.as_ref()
}
}
impl<'a> From<&'a [u8]> for CertificateSigningRequestDer<'a> {
fn from(slice: &'a [u8]) -> Self {
Self(Der::from(slice))
}
}
#[cfg(feature = "alloc")]
impl<'a> From<Vec<u8>> for CertificateSigningRequestDer<'a> {
fn from(vec: Vec<u8>) -> Self {
Self(Der::from(vec))
}
}
/// A DER-encoded X.509 certificate; as specified in RFC 5280
///
/// Certificates are identified in PEM context as `CERTIFICATE` and when stored in a
/// file usually use a `.pem`, `.cer` or `.crt` extension. For more on PEM files, refer to the
/// crate documentation.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct CertificateDer<'a>(Der<'a>);
impl AsRef<[u8]> for CertificateDer<'_> {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl Deref for CertificateDer<'_> {
type Target = [u8];
fn deref(&self) -> &Self::Target {
self.as_ref()
}
}
impl<'a> From<&'a [u8]> for CertificateDer<'a> {
fn from(slice: &'a [u8]) -> Self {
Self(Der::from(slice))
}
}
#[cfg(feature = "alloc")]
impl<'a> From<Vec<u8>> for CertificateDer<'a> {
fn from(vec: Vec<u8>) -> Self {
Self(Der::from(vec))
}
}
impl CertificateDer<'_> {
/// Converts this certificate into its owned variant, unfreezing borrowed content (if any)
#[cfg(feature = "alloc")]
pub fn into_owned(self) -> CertificateDer<'static> {
CertificateDer(Der(self.0 .0.into_owned()))
}
}
/// A DER-encoded SubjectPublicKeyInfo (SPKI), as specified in RFC 5280.
#[deprecated(since = "1.7.0", note = "Prefer `SubjectPublicKeyInfoDer` instead")]
pub type SubjectPublicKeyInfo<'a> = SubjectPublicKeyInfoDer<'a>;
/// A DER-encoded SubjectPublicKeyInfo (SPKI), as specified in RFC 5280.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct SubjectPublicKeyInfoDer<'a>(Der<'a>);
impl AsRef<[u8]> for SubjectPublicKeyInfoDer<'_> {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl Deref for SubjectPublicKeyInfoDer<'_> {
type Target = [u8];
fn deref(&self) -> &Self::Target {
self.as_ref()
}
}
impl<'a> From<&'a [u8]> for SubjectPublicKeyInfoDer<'a> {
fn from(slice: &'a [u8]) -> Self {
Self(Der::from(slice))
}
}
#[cfg(feature = "alloc")]
impl<'a> From<Vec<u8>> for SubjectPublicKeyInfoDer<'a> {
fn from(vec: Vec<u8>) -> Self {
Self(Der::from(vec))
}
}
impl SubjectPublicKeyInfoDer<'_> {
/// Converts this SubjectPublicKeyInfo into its owned variant, unfreezing borrowed content (if any)
#[cfg(feature = "alloc")]
pub fn into_owned(self) -> SubjectPublicKeyInfoDer<'static> {
SubjectPublicKeyInfoDer(Der(self.0 .0.into_owned()))
}
}
/// A TLS-encoded Encrypted Client Hello (ECH) configuration list (`ECHConfigList`); as specified in
/// [draft-ietf-tls-esni-18 ยง4](https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-18#section-4)
#[derive(Clone, Eq, PartialEq)]
pub struct EchConfigListBytes<'a>(BytesInner<'a>);
impl EchConfigListBytes<'_> {
/// Converts this config into its owned variant, unfreezing borrowed content (if any)
#[cfg(feature = "alloc")]
pub fn into_owned(self) -> EchConfigListBytes<'static> {
EchConfigListBytes(self.0.into_owned())
}
}
impl fmt::Debug for EchConfigListBytes<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
hex(f, self.as_ref())
}
}
impl AsRef<[u8]> for EchConfigListBytes<'_> {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl Deref for EchConfigListBytes<'_> {
type Target = [u8];
fn deref(&self) -> &Self::Target {
self.as_ref()
}
}
impl<'a> From<&'a [u8]> for EchConfigListBytes<'a> {
fn from(slice: &'a [u8]) -> Self {
Self(BytesInner::Borrowed(slice))
}
}
#[cfg(feature = "alloc")]
impl<'a> From<Vec<u8>> for EchConfigListBytes<'a> {
fn from(vec: Vec<u8>) -> Self {
Self(BytesInner::Owned(vec))
}
}
/// An abstract signature verification algorithm.
///
/// One of these is needed per supported pair of public key type (identified
/// with `public_key_alg_id()`) and `signatureAlgorithm` (identified with
/// `signature_alg_id()`). Note that both of these `AlgorithmIdentifier`s include
/// the parameters encoding, so separate `SignatureVerificationAlgorithm`s are needed
/// for each possible public key or signature parameters.
///
/// Debug implementations should list the public key algorithm identifier and
/// signature algorithm identifier in human friendly form (i.e. not encoded bytes),
/// along with the name of the implementing library (to distinguish different
/// implementations of the same algorithms).
pub trait SignatureVerificationAlgorithm: Send + Sync + fmt::Debug {
/// Verify a signature.
///
/// `public_key` is the `subjectPublicKey` value from a `SubjectPublicKeyInfo` encoding
/// and is untrusted. The key's `subjectPublicKeyInfo` matches the [`AlgorithmIdentifier`]
/// returned by `public_key_alg_id()`.
///
/// `message` is the data over which the signature was allegedly computed.
/// It is not hashed; implementations of this trait function must do hashing
/// if that is required by the algorithm they implement.
///
/// `signature` is the signature allegedly over `message`.
///
/// Return `Ok(())` only if `signature` is a valid signature on `message`.
///
/// Return `Err(InvalidSignature)` if the signature is invalid, including if the `public_key`
/// encoding is invalid. There is no need or opportunity to produce errors
/// that are more specific than this.
fn verify_signature(
&self,
public_key: &[u8],
message: &[u8],
signature: &[u8],
) -> Result<(), InvalidSignature>;
/// Return the `AlgorithmIdentifier` that must equal a public key's
/// `subjectPublicKeyInfo` value for this `SignatureVerificationAlgorithm`
/// to be used for signature verification.
fn public_key_alg_id(&self) -> AlgorithmIdentifier;
/// Return the `AlgorithmIdentifier` that must equal the `signatureAlgorithm` value
/// on the data to be verified for this `SignatureVerificationAlgorithm` to be used
/// for signature verification.
fn signature_alg_id(&self) -> AlgorithmIdentifier;
/// Return `true` if this is backed by a FIPS-approved implementation.
fn fips(&self) -> bool {
false
}
}
/// A detail-less error when a signature is not valid.
#[derive(Debug, Copy, Clone)]
pub struct InvalidSignature;
/// A DER encoding of the PKIX AlgorithmIdentifier type:
///
/// ```ASN.1
/// AlgorithmIdentifier ::= SEQUENCE {
/// algorithm OBJECT IDENTIFIER,
/// parameters ANY DEFINED BY algorithm OPTIONAL }
/// -- contains a value of the type
/// -- registered for use with the
/// -- algorithm object identifier value
/// ```
/// (from <https://www.rfc-editor.org/rfc/rfc5280#section-4.1.1.2>)
///
/// The outer sequence encoding is *not included*, so this is the DER encoding
/// of an OID for `algorithm` plus the `parameters` value.
///
/// For example, this is the `rsaEncryption` algorithm:
///
/// ```
/// let rsa_encryption = rustls_pki_types::AlgorithmIdentifier::from_slice(
/// &[
/// // algorithm: 1.2.840.113549.1.1.1
/// 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01,
/// // parameters: NULL
/// 0x05, 0x00
/// ]
/// );
/// ```
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct AlgorithmIdentifier(&'static [u8]);
impl AlgorithmIdentifier {
/// Makes a new `AlgorithmIdentifier` from a static octet slice.
///
/// This does not validate the contents of the slice.
pub const fn from_slice(bytes: &'static [u8]) -> Self {
Self(bytes)
}
}
impl AsRef<[u8]> for AlgorithmIdentifier {
fn as_ref(&self) -> &[u8] {
self.0
}
}
impl fmt::Debug for AlgorithmIdentifier {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
hex(f, self.0)
}
}
impl Deref for AlgorithmIdentifier {
type Target = [u8];
fn deref(&self) -> &Self::Target {
self.as_ref()
}
}
/// A timestamp, tracking the number of non-leap seconds since the Unix epoch.
///
/// The Unix epoch is defined January 1, 1970 00:00:00 UTC.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd)]
pub struct UnixTime(u64);
impl UnixTime {
/// The current time, as a `UnixTime`
#[cfg(any(
all(
feature = "std",
not(all(target_family = "wasm", target_os = "unknown"))
),
all(target_family = "wasm", target_os = "unknown", feature = "web")
))]
pub fn now() -> Self {
Self::since_unix_epoch(
SystemTime::now()
.duration_since(SystemTime::UNIX_EPOCH)
.unwrap(), // Safe: this code did not exist before 1970.
)
}
/// Convert a `Duration` since the start of 1970 to a `UnixTime`
///
/// The `duration` must be relative to the Unix epoch.
pub fn since_unix_epoch(duration: Duration) -> Self {
Self(duration.as_secs())
}
/// Number of seconds since the Unix epoch
pub fn as_secs(&self) -> u64 {
self.0
}
}
/// DER-encoded data, either owned or borrowed
///
/// This wrapper type is used to represent DER-encoded data in a way that is agnostic to whether
/// the data is owned (by a `Vec<u8>`) or borrowed (by a `&[u8]`). Support for the owned
/// variant is only available when the `alloc` feature is enabled.
#[derive(Clone, Eq, PartialEq)]
pub struct Der<'a>(BytesInner<'a>);
impl<'a> Der<'a> {
/// A const constructor to create a `Der` from a borrowed slice
pub const fn from_slice(der: &'a [u8]) -> Self {
Self(BytesInner::Borrowed(der))
}
}
impl AsRef<[u8]> for Der<'_> {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl Deref for Der<'_> {
type Target = [u8];
fn deref(&self) -> &Self::Target {
self.as_ref()
}
}
impl<'a> From<&'a [u8]> for Der<'a> {
fn from(slice: &'a [u8]) -> Self {
Self(BytesInner::Borrowed(slice))
}
}
#[cfg(feature = "alloc")]
impl From<Vec<u8>> for Der<'static> {
fn from(vec: Vec<u8>) -> Self {
Self(BytesInner::Owned(vec))
}
}
impl fmt::Debug for Der<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
hex(f, self.as_ref())
}
}
#[derive(Debug, Clone)]
enum BytesInner<'a> {
#[cfg(feature = "alloc")]
Owned(Vec<u8>),
Borrowed(&'a [u8]),
}
#[cfg(feature = "alloc")]
impl BytesInner<'_> {
fn into_owned(self) -> BytesInner<'static> {
BytesInner::Owned(match self {
Self::Owned(vec) => vec,
Self::Borrowed(slice) => slice.to_vec(),
})
}
}
impl AsRef<[u8]> for BytesInner<'_> {
fn as_ref(&self) -> &[u8] {
match &self {
#[cfg(feature = "alloc")]
BytesInner::Owned(vec) => vec.as_ref(),
BytesInner::Borrowed(slice) => slice,
}
}
}
impl PartialEq for BytesInner<'_> {
fn eq(&self, other: &Self) -> bool {
self.as_ref() == other.as_ref()
}
}
impl Eq for BytesInner<'_> {}
// Format an iterator of u8 into a hex string
fn hex<'a>(f: &mut fmt::Formatter<'_>, payload: impl IntoIterator<Item = &'a u8>) -> fmt::Result {
for (i, b) in payload.into_iter().enumerate() {
if i == 0 {
write!(f, "0x")?;
}
write!(f, "{:02x}", b)?;
}
Ok(())
}
#[cfg(all(test, feature = "std"))]
mod tests {
use super::*;
#[test]
fn der_debug() {
let der = Der::from_slice(&[0x01, 0x02, 0x03]);
assert_eq!(format!("{:?}", der), "0x010203");
}
#[test]
fn alg_id_debug() {
let alg_id = AlgorithmIdentifier::from_slice(&[0x01, 0x02, 0x03]);
assert_eq!(format!("{:?}", alg_id), "0x010203");
}
#[test]
fn bytes_inner_equality() {
let owned_a = BytesInner::Owned(vec![1, 2, 3]);
let owned_b = BytesInner::Owned(vec![4, 5]);
let borrowed_a = BytesInner::Borrowed(&[1, 2, 3]);
let borrowed_b = BytesInner::Borrowed(&[99]);
// Self-equality.
assert_eq!(owned_a, owned_a);
assert_eq!(owned_b, owned_b);
assert_eq!(borrowed_a, borrowed_a);
assert_eq!(borrowed_b, borrowed_b);
// Borrowed vs Owned equality
assert_eq!(owned_a, borrowed_a);
assert_eq!(borrowed_a, owned_a);
// Owned inequality
assert_ne!(owned_a, owned_b);
assert_ne!(owned_b, owned_a);
// Borrowed inequality
assert_ne!(borrowed_a, borrowed_b);
assert_ne!(borrowed_b, borrowed_a);
// Borrowed vs Owned inequality
assert_ne!(owned_a, borrowed_b);
assert_ne!(borrowed_b, owned_a);
}
}