subtle/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
// -*- mode: rust; -*-
//
// This file is part of subtle, part of the dalek cryptography project.
// Copyright (c) 2016-2018 isis lovecruft, Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>
#![no_std]
#![deny(missing_docs)]
#![doc(html_logo_url = "https://doc.dalek.rs/assets/dalek-logo-clear.png")]
#![doc(html_root_url = "https://docs.rs/subtle/2.5.0")]
//! # subtle [![](https://img.shields.io/crates/v/subtle.svg)](https://crates.io/crates/subtle) [![](https://img.shields.io/badge/dynamic/json.svg?label=docs&uri=https%3A%2F%2Fcrates.io%2Fapi%2Fv1%2Fcrates%2Fsubtle%2Fversions&query=%24.versions%5B0%5D.num&colorB=4F74A6)](https://doc.dalek.rs/subtle) [![](https://travis-ci.org/dalek-cryptography/subtle.svg?branch=master)](https://travis-ci.org/dalek-cryptography/subtle)
//!
//! **Pure-Rust traits and utilities for constant-time cryptographic implementations.**
//!
//! It consists of a `Choice` type, and a collection of traits using `Choice`
//! instead of `bool` which are intended to execute in constant-time. The `Choice`
//! type is a wrapper around a `u8` that holds a `0` or `1`.
//!
//! ```toml
//! subtle = "2.5"
//! ```
//!
//! This crate represents a “best-effort” attempt, since side-channels
//! are ultimately a property of a deployed cryptographic system
//! including the hardware it runs on, not just of software.
//!
//! The traits are implemented using bitwise operations, and should execute in
//! constant time provided that a) the bitwise operations are constant-time and
//! b) the bitwise operations are not recognized as a conditional assignment and
//! optimized back into a branch.
//!
//! For a compiler to recognize that bitwise operations represent a conditional
//! assignment, it needs to know that the value used to generate the bitmasks is
//! really a boolean `i1` rather than an `i8` byte value. In an attempt to
//! prevent this refinement, the crate tries to hide the value of a `Choice`'s
//! inner `u8` by passing it through a volatile read. For more information, see
//! the _About_ section below.
//!
//! Rust versions from 1.66 or higher support a new best-effort optimization
//! barrier ([`core::hint::black_box`]). To use the new optimization barrier,
//! enable the `core_hint_black_box` feature.
//!
//! Rust versions from 1.51 or higher have const generics support. You may enable
//! `const-generics` feautre to have `subtle` traits implemented for arrays `[T; N]`.
//!
//! Versions prior to `2.2` recommended use of the `nightly` feature to enable an
//! optimization barrier; this is not required in versions `2.2` and above.
//!
//! Note: the `subtle` crate contains `debug_assert`s to check invariants during
//! debug builds. These invariant checks involve secret-dependent branches, and
//! are not present when compiled in release mode. This crate is intended to be
//! used in release mode.
//!
//! ## Documentation
//!
//! Documentation is available [here][docs].
//!
//! ## Minimum Supported Rust Version
//!
//! Rust **1.41** or higher.
//!
//! Minimum supported Rust version can be changed in the future, but it will be done with a minor version bump.
//!
//! ## About
//!
//! This library aims to be the Rust equivalent of Go’s `crypto/subtle` module.
//!
//! Old versions of the optimization barrier in `impl From<u8> for Choice` were
//! based on Tim Maclean's [work on `rust-timing-shield`][rust-timing-shield],
//! which attempts to provide a more comprehensive approach for preventing
//! software side-channels in Rust code.
//!
//! From version `2.2`, it was based on Diane Hosfelt and Amber Sprenkels' work on
//! "Secret Types in Rust". Version `2.5` adds the `core_hint_black_box` feature,
//! which uses the original method through the [`core::hint::black_box`] function
//! from the Rust standard library.
//!
//! `subtle` is authored by isis agora lovecruft and Henry de Valence.
//!
//! ## Warning
//!
//! This code is a low-level library, intended for specific use-cases implementing
//! cryptographic protocols. It represents a best-effort attempt to protect
//! against some software side-channels. Because side-channel resistance is not a
//! property of software alone, but of software together with hardware, any such
//! effort is fundamentally limited.
//!
//! **USE AT YOUR OWN RISK**
//!
//! [docs]: https://docs.rs/subtle
//! [`core::hint::black_box`]: https://doc.rust-lang.org/core/hint/fn.black_box.html
//! [rust-timing-shield]: https://www.chosenplaintext.ca/open-source/rust-timing-shield/security
#[cfg(feature = "std")]
#[macro_use]
extern crate std;
use core::cmp;
use core::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Neg, Not};
use core::option::Option;
/// The `Choice` struct represents a choice for use in conditional assignment.
///
/// It is a wrapper around a `u8`, which should have the value either `1` (true)
/// or `0` (false).
///
/// The conversion from `u8` to `Choice` passes the value through an optimization
/// barrier, as a best-effort attempt to prevent the compiler from inferring that
/// the `Choice` value is a boolean. This strategy is based on Tim Maclean's
/// [work on `rust-timing-shield`][rust-timing-shield], which attempts to provide
/// a more comprehensive approach for preventing software side-channels in Rust
/// code.
///
/// The `Choice` struct implements operators for AND, OR, XOR, and NOT, to allow
/// combining `Choice` values. These operations do not short-circuit.
///
/// [rust-timing-shield]:
/// https://www.chosenplaintext.ca/open-source/rust-timing-shield/security
#[derive(Copy, Clone, Debug)]
pub struct Choice(u8);
impl Choice {
/// Unwrap the `Choice` wrapper to reveal the underlying `u8`.
///
/// # Note
///
/// This function only exists as an **escape hatch** for the rare case
/// where it's not possible to use one of the `subtle`-provided
/// trait impls.
///
/// **To convert a `Choice` to a `bool`, use the `From` implementation instead.**
#[inline]
pub fn unwrap_u8(&self) -> u8 {
self.0
}
}
impl From<Choice> for bool {
/// Convert the `Choice` wrapper into a `bool`, depending on whether
/// the underlying `u8` was a `0` or a `1`.
///
/// # Note
///
/// This function exists to avoid having higher-level cryptographic protocol
/// implementations duplicating this pattern.
///
/// The intended use case for this conversion is at the _end_ of a
/// higher-level primitive implementation: for example, in checking a keyed
/// MAC, where the verification should happen in constant-time (and thus use
/// a `Choice`) but it is safe to return a `bool` at the end of the
/// verification.
#[inline]
fn from(source: Choice) -> bool {
debug_assert!((source.0 == 0u8) | (source.0 == 1u8));
source.0 != 0
}
}
impl BitAnd for Choice {
type Output = Choice;
#[inline]
fn bitand(self, rhs: Choice) -> Choice {
(self.0 & rhs.0).into()
}
}
impl BitAndAssign for Choice {
#[inline]
fn bitand_assign(&mut self, rhs: Choice) {
*self = *self & rhs;
}
}
impl BitOr for Choice {
type Output = Choice;
#[inline]
fn bitor(self, rhs: Choice) -> Choice {
(self.0 | rhs.0).into()
}
}
impl BitOrAssign for Choice {
#[inline]
fn bitor_assign(&mut self, rhs: Choice) {
*self = *self | rhs;
}
}
impl BitXor for Choice {
type Output = Choice;
#[inline]
fn bitxor(self, rhs: Choice) -> Choice {
(self.0 ^ rhs.0).into()
}
}
impl BitXorAssign for Choice {
#[inline]
fn bitxor_assign(&mut self, rhs: Choice) {
*self = *self ^ rhs;
}
}
impl Not for Choice {
type Output = Choice;
#[inline]
fn not(self) -> Choice {
(1u8 & (!self.0)).into()
}
}
/// This function is a best-effort attempt to prevent the compiler from knowing
/// anything about the value of the returned `u8`, other than its type.
///
/// Because we want to support stable Rust, we don't have access to inline
/// assembly or test::black_box, so we use the fact that volatile values will
/// never be elided to register values.
///
/// Note: Rust's notion of "volatile" is subject to change over time. While this
/// code may break in a non-destructive way in the future, “constant-time” code
/// is a continually moving target, and this is better than doing nothing.
#[cfg(not(feature = "core_hint_black_box"))]
#[inline(never)]
fn black_box(input: u8) -> u8 {
debug_assert!((input == 0u8) | (input == 1u8));
unsafe {
// Optimization barrier
//
// Unsafe is ok, because:
// - &input is not NULL;
// - size of input is not zero;
// - u8 is neither Sync, nor Send;
// - u8 is Copy, so input is always live;
// - u8 type is always properly aligned.
core::ptr::read_volatile(&input as *const u8)
}
}
#[cfg(feature = "core_hint_black_box")]
#[inline(never)]
fn black_box(input: u8) -> u8 {
debug_assert!((input == 0u8) | (input == 1u8));
core::hint::black_box(input)
}
impl From<u8> for Choice {
#[inline]
fn from(input: u8) -> Choice {
// Our goal is to prevent the compiler from inferring that the value held inside the
// resulting `Choice` struct is really an `i1` instead of an `i8`.
Choice(black_box(input))
}
}
/// An `Eq`-like trait that produces a `Choice` instead of a `bool`.
///
/// # Example
///
/// ```
/// use subtle::ConstantTimeEq;
/// let x: u8 = 5;
/// let y: u8 = 13;
///
/// assert_eq!(x.ct_eq(&y).unwrap_u8(), 0);
/// assert_eq!(x.ct_eq(&x).unwrap_u8(), 1);
/// ```
pub trait ConstantTimeEq {
/// Determine if two items are equal.
///
/// The `ct_eq` function should execute in constant time.
///
/// # Returns
///
/// * `Choice(1u8)` if `self == other`;
/// * `Choice(0u8)` if `self != other`.
#[inline]
fn ct_eq(&self, other: &Self) -> Choice;
/// Determine if two items are NOT equal.
///
/// The `ct_ne` function should execute in constant time.
///
/// # Returns
///
/// * `Choice(0u8)` if `self == other`;
/// * `Choice(1u8)` if `self != other`.
#[inline]
fn ct_ne(&self, other: &Self) -> Choice {
!self.ct_eq(other)
}
}
impl<T: ConstantTimeEq> ConstantTimeEq for [T] {
/// Check whether two slices of `ConstantTimeEq` types are equal.
///
/// # Note
///
/// This function short-circuits if the lengths of the input slices
/// are different. Otherwise, it should execute in time independent
/// of the slice contents.
///
/// Since arrays coerce to slices, this function works with fixed-size arrays:
///
/// ```
/// # use subtle::ConstantTimeEq;
/// #
/// let a: [u8; 8] = [0,1,2,3,4,5,6,7];
/// let b: [u8; 8] = [0,1,2,3,0,1,2,3];
///
/// let a_eq_a = a.ct_eq(&a);
/// let a_eq_b = a.ct_eq(&b);
///
/// assert_eq!(a_eq_a.unwrap_u8(), 1);
/// assert_eq!(a_eq_b.unwrap_u8(), 0);
/// ```
#[inline]
fn ct_eq(&self, _rhs: &[T]) -> Choice {
let len = self.len();
// Short-circuit on the *lengths* of the slices, not their
// contents.
if len != _rhs.len() {
return Choice::from(0);
}
// This loop shouldn't be shortcircuitable, since the compiler
// shouldn't be able to reason about the value of the `u8`
// unwrapped from the `ct_eq` result.
let mut x = 1u8;
for (ai, bi) in self.iter().zip(_rhs.iter()) {
x &= ai.ct_eq(bi).unwrap_u8();
}
x.into()
}
}
impl ConstantTimeEq for Choice {
#[inline]
fn ct_eq(&self, rhs: &Choice) -> Choice {
!(*self ^ *rhs)
}
}
/// Given the bit-width `$bit_width` and the corresponding primitive
/// unsigned and signed types `$t_u` and `$t_i` respectively, generate
/// an `ConstantTimeEq` implementation.
macro_rules! generate_integer_equal {
($t_u:ty, $t_i:ty, $bit_width:expr) => {
impl ConstantTimeEq for $t_u {
#[inline]
fn ct_eq(&self, other: &$t_u) -> Choice {
// x == 0 if and only if self == other
let x: $t_u = self ^ other;
// If x == 0, then x and -x are both equal to zero;
// otherwise, one or both will have its high bit set.
let y: $t_u = (x | x.wrapping_neg()) >> ($bit_width - 1);
// Result is the opposite of the high bit (now shifted to low).
((y ^ (1 as $t_u)) as u8).into()
}
}
impl ConstantTimeEq for $t_i {
#[inline]
fn ct_eq(&self, other: &$t_i) -> Choice {
// Bitcast to unsigned and call that implementation.
(*self as $t_u).ct_eq(&(*other as $t_u))
}
}
};
}
generate_integer_equal!(u8, i8, 8);
generate_integer_equal!(u16, i16, 16);
generate_integer_equal!(u32, i32, 32);
generate_integer_equal!(u64, i64, 64);
#[cfg(feature = "i128")]
generate_integer_equal!(u128, i128, 128);
generate_integer_equal!(usize, isize, ::core::mem::size_of::<usize>() * 8);
/// `Ordering` is `#[repr(i8)]` making it possible to leverage `i8::ct_eq`.
impl ConstantTimeEq for cmp::Ordering {
#[inline]
fn ct_eq(&self, other: &Self) -> Choice {
(*self as i8).ct_eq(&(*other as i8))
}
}
/// A type which can be conditionally selected in constant time.
///
/// This trait also provides generic implementations of conditional
/// assignment and conditional swaps.
pub trait ConditionallySelectable: Copy {
/// Select `a` or `b` according to `choice`.
///
/// # Returns
///
/// * `a` if `choice == Choice(0)`;
/// * `b` if `choice == Choice(1)`.
///
/// This function should execute in constant time.
///
/// # Example
///
/// ```
/// use subtle::ConditionallySelectable;
/// #
/// # fn main() {
/// let x: u8 = 13;
/// let y: u8 = 42;
///
/// let z = u8::conditional_select(&x, &y, 0.into());
/// assert_eq!(z, x);
/// let z = u8::conditional_select(&x, &y, 1.into());
/// assert_eq!(z, y);
/// # }
/// ```
#[inline]
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self;
/// Conditionally assign `other` to `self`, according to `choice`.
///
/// This function should execute in constant time.
///
/// # Example
///
/// ```
/// use subtle::ConditionallySelectable;
/// #
/// # fn main() {
/// let mut x: u8 = 13;
/// let mut y: u8 = 42;
///
/// x.conditional_assign(&y, 0.into());
/// assert_eq!(x, 13);
/// x.conditional_assign(&y, 1.into());
/// assert_eq!(x, 42);
/// # }
/// ```
#[inline]
fn conditional_assign(&mut self, other: &Self, choice: Choice) {
*self = Self::conditional_select(self, other, choice);
}
/// Conditionally swap `self` and `other` if `choice == 1`; otherwise,
/// reassign both unto themselves.
///
/// This function should execute in constant time.
///
/// # Example
///
/// ```
/// use subtle::ConditionallySelectable;
/// #
/// # fn main() {
/// let mut x: u8 = 13;
/// let mut y: u8 = 42;
///
/// u8::conditional_swap(&mut x, &mut y, 0.into());
/// assert_eq!(x, 13);
/// assert_eq!(y, 42);
/// u8::conditional_swap(&mut x, &mut y, 1.into());
/// assert_eq!(x, 42);
/// assert_eq!(y, 13);
/// # }
/// ```
#[inline]
fn conditional_swap(a: &mut Self, b: &mut Self, choice: Choice) {
let t: Self = *a;
a.conditional_assign(&b, choice);
b.conditional_assign(&t, choice);
}
}
macro_rules! to_signed_int {
(u8) => {
i8
};
(u16) => {
i16
};
(u32) => {
i32
};
(u64) => {
i64
};
(u128) => {
i128
};
(i8) => {
i8
};
(i16) => {
i16
};
(i32) => {
i32
};
(i64) => {
i64
};
(i128) => {
i128
};
}
macro_rules! generate_integer_conditional_select {
($($t:tt)*) => ($(
impl ConditionallySelectable for $t {
#[inline]
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
// if choice = 0, mask = (-0) = 0000...0000
// if choice = 1, mask = (-1) = 1111...1111
let mask = -(choice.unwrap_u8() as to_signed_int!($t)) as $t;
a ^ (mask & (a ^ b))
}
#[inline]
fn conditional_assign(&mut self, other: &Self, choice: Choice) {
// if choice = 0, mask = (-0) = 0000...0000
// if choice = 1, mask = (-1) = 1111...1111
let mask = -(choice.unwrap_u8() as to_signed_int!($t)) as $t;
*self ^= mask & (*self ^ *other);
}
#[inline]
fn conditional_swap(a: &mut Self, b: &mut Self, choice: Choice) {
// if choice = 0, mask = (-0) = 0000...0000
// if choice = 1, mask = (-1) = 1111...1111
let mask = -(choice.unwrap_u8() as to_signed_int!($t)) as $t;
let t = mask & (*a ^ *b);
*a ^= t;
*b ^= t;
}
}
)*)
}
generate_integer_conditional_select!( u8 i8);
generate_integer_conditional_select!( u16 i16);
generate_integer_conditional_select!( u32 i32);
generate_integer_conditional_select!( u64 i64);
#[cfg(feature = "i128")]
generate_integer_conditional_select!(u128 i128);
/// `Ordering` is `#[repr(i8)]` where:
///
/// - `Less` => -1
/// - `Equal` => 0
/// - `Greater` => 1
///
/// Given this, it's possible to operate on orderings as if they're integers,
/// which allows leveraging conditional masking for predication.
impl ConditionallySelectable for cmp::Ordering {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
let a = *a as i8;
let b = *b as i8;
let ret = i8::conditional_select(&a, &b, choice);
// SAFETY: `Ordering` is `#[repr(i8)]` and `ret` has been assigned to
// a value which was originally a valid `Ordering` then cast to `i8`
unsafe { *((&ret as *const _) as *const cmp::Ordering) }
}
}
impl ConditionallySelectable for Choice {
#[inline]
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Choice(u8::conditional_select(&a.0, &b.0, choice))
}
}
#[cfg(feature = "const-generics")]
impl<T, const N: usize> ConditionallySelectable for [T; N]
where
T: ConditionallySelectable,
{
#[inline]
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
let mut output = *a;
output.conditional_assign(b, choice);
output
}
fn conditional_assign(&mut self, other: &Self, choice: Choice) {
for (a_i, b_i) in self.iter_mut().zip(other) {
a_i.conditional_assign(b_i, choice)
}
}
}
/// A type which can be conditionally negated in constant time.
///
/// # Note
///
/// A generic implementation of `ConditionallyNegatable` is provided
/// for types `T` which are `ConditionallySelectable` and have `Neg`
/// implemented on `&T`.
pub trait ConditionallyNegatable {
/// Negate `self` if `choice == Choice(1)`; otherwise, leave it
/// unchanged.
///
/// This function should execute in constant time.
#[inline]
fn conditional_negate(&mut self, choice: Choice);
}
impl<T> ConditionallyNegatable for T
where
T: ConditionallySelectable,
for<'a> &'a T: Neg<Output = T>,
{
#[inline]
fn conditional_negate(&mut self, choice: Choice) {
// Need to cast to eliminate mutability
let self_neg: T = -(self as &T);
self.conditional_assign(&self_neg, choice);
}
}
/// The `CtOption<T>` type represents an optional value similar to the
/// [`Option<T>`](core::option::Option) type but is intended for
/// use in constant time APIs.
///
/// Any given `CtOption<T>` is either `Some` or `None`, but unlike
/// `Option<T>` these variants are not exposed. The
/// [`is_some()`](CtOption::is_some) method is used to determine if
/// the value is `Some`, and [`unwrap_or()`](CtOption::unwrap_or) and
/// [`unwrap_or_else()`](CtOption::unwrap_or_else) methods are
/// provided to access the underlying value. The value can also be
/// obtained with [`unwrap()`](CtOption::unwrap) but this will panic
/// if it is `None`.
///
/// Functions that are intended to be constant time may not produce
/// valid results for all inputs, such as square root and inversion
/// operations in finite field arithmetic. Returning an `Option<T>`
/// from these functions makes it difficult for the caller to reason
/// about the result in constant time, and returning an incorrect
/// value burdens the caller and increases the chance of bugs.
#[derive(Clone, Copy, Debug)]
pub struct CtOption<T> {
value: T,
is_some: Choice,
}
impl<T> From<CtOption<T>> for Option<T> {
/// Convert the `CtOption<T>` wrapper into an `Option<T>`, depending on whether
/// the underlying `is_some` `Choice` was a `0` or a `1` once unwrapped.
///
/// # Note
///
/// This function exists to avoid ending up with ugly, verbose and/or bad handled
/// conversions from the `CtOption<T>` wraps to an `Option<T>` or `Result<T, E>`.
/// This implementation doesn't intend to be constant-time nor try to protect the
/// leakage of the `T` since the `Option<T>` will do it anyways.
fn from(source: CtOption<T>) -> Option<T> {
if source.is_some().unwrap_u8() == 1u8 {
Option::Some(source.value)
} else {
None
}
}
}
impl<T> CtOption<T> {
/// This method is used to construct a new `CtOption<T>` and takes
/// a value of type `T`, and a `Choice` that determines whether
/// the optional value should be `Some` or not. If `is_some` is
/// false, the value will still be stored but its value is never
/// exposed.
#[inline]
pub fn new(value: T, is_some: Choice) -> CtOption<T> {
CtOption {
value: value,
is_some: is_some,
}
}
/// Returns the contained value, consuming the `self` value.
///
/// # Panics
///
/// Panics if the value is none with a custom panic message provided by
/// `msg`.
pub fn expect(self, msg: &str) -> T {
assert_eq!(self.is_some.unwrap_u8(), 1, "{}", msg);
self.value
}
/// This returns the underlying value but panics if it
/// is not `Some`.
#[inline]
pub fn unwrap(self) -> T {
assert_eq!(self.is_some.unwrap_u8(), 1);
self.value
}
/// This returns the underlying value if it is `Some`
/// or the provided value otherwise.
#[inline]
pub fn unwrap_or(self, def: T) -> T
where
T: ConditionallySelectable,
{
T::conditional_select(&def, &self.value, self.is_some)
}
/// This returns the underlying value if it is `Some`
/// or the value produced by the provided closure otherwise.
///
/// This operates in constant time, because the provided closure
/// is always called.
#[inline]
pub fn unwrap_or_else<F>(self, f: F) -> T
where
T: ConditionallySelectable,
F: FnOnce() -> T,
{
T::conditional_select(&f(), &self.value, self.is_some)
}
/// Returns a true `Choice` if this value is `Some`.
#[inline]
pub fn is_some(&self) -> Choice {
self.is_some
}
/// Returns a true `Choice` if this value is `None`.
#[inline]
pub fn is_none(&self) -> Choice {
!self.is_some
}
/// Returns a `None` value if the option is `None`, otherwise
/// returns a `CtOption` enclosing the value of the provided closure.
/// The closure is given the enclosed value or, if the option is
/// `None`, it is provided a dummy value computed using
/// `Default::default()`.
///
/// This operates in constant time, because the provided closure
/// is always called.
#[inline]
pub fn map<U, F>(self, f: F) -> CtOption<U>
where
T: Default + ConditionallySelectable,
F: FnOnce(T) -> U,
{
CtOption::new(
f(T::conditional_select(
&T::default(),
&self.value,
self.is_some,
)),
self.is_some,
)
}
/// Returns a `None` value if the option is `None`, otherwise
/// returns the result of the provided closure. The closure is
/// given the enclosed value or, if the option is `None`, it
/// is provided a dummy value computed using `Default::default()`.
///
/// This operates in constant time, because the provided closure
/// is always called.
#[inline]
pub fn and_then<U, F>(self, f: F) -> CtOption<U>
where
T: Default + ConditionallySelectable,
F: FnOnce(T) -> CtOption<U>,
{
let mut tmp = f(T::conditional_select(
&T::default(),
&self.value,
self.is_some,
));
tmp.is_some &= self.is_some;
tmp
}
/// Returns `self` if it contains a value, and otherwise returns the result of
/// calling `f`. The provided function `f` is always called.
#[inline]
pub fn or_else<F>(self, f: F) -> CtOption<T>
where
T: ConditionallySelectable,
F: FnOnce() -> CtOption<T>,
{
let is_none = self.is_none();
let f = f();
Self::conditional_select(&self, &f, is_none)
}
}
impl<T: ConditionallySelectable> ConditionallySelectable for CtOption<T> {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
CtOption::new(
T::conditional_select(&a.value, &b.value, choice),
Choice::conditional_select(&a.is_some, &b.is_some, choice),
)
}
}
impl<T: ConstantTimeEq> ConstantTimeEq for CtOption<T> {
/// Two `CtOption<T>`s are equal if they are both `Some` and
/// their values are equal, or both `None`.
#[inline]
fn ct_eq(&self, rhs: &CtOption<T>) -> Choice {
let a = self.is_some();
let b = rhs.is_some();
(a & b & self.value.ct_eq(&rhs.value)) | (!a & !b)
}
}
/// A type which can be compared in some manner and be determined to be greater
/// than another of the same type.
pub trait ConstantTimeGreater {
/// Determine whether `self > other`.
///
/// The bitwise-NOT of the return value of this function should be usable to
/// determine if `self <= other`.
///
/// This function should execute in constant time.
///
/// # Returns
///
/// A `Choice` with a set bit if `self > other`, and with no set bits
/// otherwise.
///
/// # Example
///
/// ```
/// use subtle::ConstantTimeGreater;
///
/// let x: u8 = 13;
/// let y: u8 = 42;
///
/// let x_gt_y = x.ct_gt(&y);
///
/// assert_eq!(x_gt_y.unwrap_u8(), 0);
///
/// let y_gt_x = y.ct_gt(&x);
///
/// assert_eq!(y_gt_x.unwrap_u8(), 1);
///
/// let x_gt_x = x.ct_gt(&x);
///
/// assert_eq!(x_gt_x.unwrap_u8(), 0);
/// ```
fn ct_gt(&self, other: &Self) -> Choice;
}
macro_rules! generate_unsigned_integer_greater {
($t_u: ty, $bit_width: expr) => {
impl ConstantTimeGreater for $t_u {
/// Returns Choice::from(1) iff x > y, and Choice::from(0) iff x <= y.
///
/// # Note
///
/// This algoritm would also work for signed integers if we first
/// flip the top bit, e.g. `let x: u8 = x ^ 0x80`, etc.
#[inline]
fn ct_gt(&self, other: &$t_u) -> Choice {
let gtb = self & !other; // All the bits in self that are greater than their corresponding bits in other.
let mut ltb = !self & other; // All the bits in self that are less than their corresponding bits in other.
let mut pow = 1;
// Less-than operator is okay here because it's dependent on the bit-width.
while pow < $bit_width {
ltb |= ltb >> pow; // Bit-smear the highest set bit to the right.
pow += pow;
}
let mut bit = gtb & !ltb; // Select the highest set bit.
let mut pow = 1;
while pow < $bit_width {
bit |= bit >> pow; // Shift it to the right until we end up with either 0 or 1.
pow += pow;
}
// XXX We should possibly do the above flattening to 0 or 1 in the
// Choice constructor rather than making it a debug error?
Choice::from((bit & 1) as u8)
}
}
};
}
generate_unsigned_integer_greater!(u8, 8);
generate_unsigned_integer_greater!(u16, 16);
generate_unsigned_integer_greater!(u32, 32);
generate_unsigned_integer_greater!(u64, 64);
#[cfg(feature = "i128")]
generate_unsigned_integer_greater!(u128, 128);
impl ConstantTimeGreater for cmp::Ordering {
#[inline]
fn ct_gt(&self, other: &Self) -> Choice {
// No impl of `ConstantTimeGreater` for `i8`, so use `u8`
let a = (*self as i8) + 1;
let b = (*other as i8) + 1;
(a as u8).ct_gt(&(b as u8))
}
}
/// A type which can be compared in some manner and be determined to be less
/// than another of the same type.
pub trait ConstantTimeLess: ConstantTimeEq + ConstantTimeGreater {
/// Determine whether `self < other`.
///
/// The bitwise-NOT of the return value of this function should be usable to
/// determine if `self >= other`.
///
/// A default implementation is provided and implemented for the unsigned
/// integer types.
///
/// This function should execute in constant time.
///
/// # Returns
///
/// A `Choice` with a set bit if `self < other`, and with no set bits
/// otherwise.
///
/// # Example
///
/// ```
/// use subtle::ConstantTimeLess;
///
/// let x: u8 = 13;
/// let y: u8 = 42;
///
/// let x_lt_y = x.ct_lt(&y);
///
/// assert_eq!(x_lt_y.unwrap_u8(), 1);
///
/// let y_lt_x = y.ct_lt(&x);
///
/// assert_eq!(y_lt_x.unwrap_u8(), 0);
///
/// let x_lt_x = x.ct_lt(&x);
///
/// assert_eq!(x_lt_x.unwrap_u8(), 0);
/// ```
#[inline]
fn ct_lt(&self, other: &Self) -> Choice {
!self.ct_gt(other) & !self.ct_eq(other)
}
}
impl ConstantTimeLess for u8 {}
impl ConstantTimeLess for u16 {}
impl ConstantTimeLess for u32 {}
impl ConstantTimeLess for u64 {}
#[cfg(feature = "i128")]
impl ConstantTimeLess for u128 {}
impl ConstantTimeLess for cmp::Ordering {
#[inline]
fn ct_lt(&self, other: &Self) -> Choice {
// No impl of `ConstantTimeLess` for `i8`, so use `u8`
let a = (*self as i8) + 1;
let b = (*other as i8) + 1;
(a as u8).ct_lt(&(b as u8))
}
}