subtle/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
// -*- mode: rust; -*-
//
// This file is part of subtle, part of the dalek cryptography project.
// Copyright (c) 2016-2018 isis lovecruft, Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>

#![no_std]
#![deny(missing_docs)]
#![doc(html_logo_url = "https://doc.dalek.rs/assets/dalek-logo-clear.png")]
#![doc(html_root_url = "https://docs.rs/subtle/2.5.0")]

//! # subtle [![](https://img.shields.io/crates/v/subtle.svg)](https://crates.io/crates/subtle) [![](https://img.shields.io/badge/dynamic/json.svg?label=docs&uri=https%3A%2F%2Fcrates.io%2Fapi%2Fv1%2Fcrates%2Fsubtle%2Fversions&query=%24.versions%5B0%5D.num&colorB=4F74A6)](https://doc.dalek.rs/subtle) [![](https://travis-ci.org/dalek-cryptography/subtle.svg?branch=master)](https://travis-ci.org/dalek-cryptography/subtle)
//!
//! **Pure-Rust traits and utilities for constant-time cryptographic implementations.**
//!
//! It consists of a `Choice` type, and a collection of traits using `Choice`
//! instead of `bool` which are intended to execute in constant-time.  The `Choice`
//! type is a wrapper around a `u8` that holds a `0` or `1`.
//!
//! ```toml
//! subtle = "2.5"
//! ```
//!
//! This crate represents a “best-effort” attempt, since side-channels
//! are ultimately a property of a deployed cryptographic system
//! including the hardware it runs on, not just of software.
//!
//! The traits are implemented using bitwise operations, and should execute in
//! constant time provided that a) the bitwise operations are constant-time and
//! b) the bitwise operations are not recognized as a conditional assignment and
//! optimized back into a branch.
//!
//! For a compiler to recognize that bitwise operations represent a conditional
//! assignment, it needs to know that the value used to generate the bitmasks is
//! really a boolean `i1` rather than an `i8` byte value. In an attempt to
//! prevent this refinement, the crate tries to hide the value of a `Choice`'s
//! inner `u8` by passing it through a volatile read. For more information, see
//! the _About_ section below.
//!
//! Rust versions from 1.66 or higher support a new best-effort optimization
//! barrier ([`core::hint::black_box`]).  To use the new optimization barrier,
//! enable the `core_hint_black_box` feature.
//!
//! Rust versions from 1.51 or higher have const generics support. You may enable
//! `const-generics` feautre to have `subtle` traits implemented for arrays `[T; N]`.
//!
//! Versions prior to `2.2` recommended use of the `nightly` feature to enable an
//! optimization barrier; this is not required in versions `2.2` and above.
//!
//! Note: the `subtle` crate contains `debug_assert`s to check invariants during
//! debug builds. These invariant checks involve secret-dependent branches, and
//! are not present when compiled in release mode. This crate is intended to be
//! used in release mode.
//!
//! ## Documentation
//!
//! Documentation is available [here][docs].
//!
//! ## Minimum Supported Rust Version
//!
//! Rust **1.41** or higher.
//!
//! Minimum supported Rust version can be changed in the future, but it will be done with a minor version bump.
//!
//! ## About
//!
//! This library aims to be the Rust equivalent of Go’s `crypto/subtle` module.
//!
//! Old versions of the optimization barrier in `impl From<u8> for Choice` were
//! based on Tim Maclean's [work on `rust-timing-shield`][rust-timing-shield],
//! which attempts to provide a more comprehensive approach for preventing
//! software side-channels in Rust code.
//!
//! From version `2.2`, it was based on Diane Hosfelt and Amber Sprenkels' work on
//! "Secret Types in Rust". Version `2.5` adds the `core_hint_black_box` feature,
//! which uses the original method through the [`core::hint::black_box`] function
//! from the Rust standard library.
//!
//! `subtle` is authored by isis agora lovecruft and Henry de Valence.
//!
//! ## Warning
//!
//! This code is a low-level library, intended for specific use-cases implementing
//! cryptographic protocols.  It represents a best-effort attempt to protect
//! against some software side-channels.  Because side-channel resistance is not a
//! property of software alone, but of software together with hardware, any such
//! effort is fundamentally limited.
//!
//! **USE AT YOUR OWN RISK**
//!
//! [docs]: https://docs.rs/subtle
//! [`core::hint::black_box`]: https://doc.rust-lang.org/core/hint/fn.black_box.html
//! [rust-timing-shield]: https://www.chosenplaintext.ca/open-source/rust-timing-shield/security

#[cfg(feature = "std")]
#[macro_use]
extern crate std;

use core::cmp;
use core::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Neg, Not};
use core::option::Option;

/// The `Choice` struct represents a choice for use in conditional assignment.
///
/// It is a wrapper around a `u8`, which should have the value either `1` (true)
/// or `0` (false).
///
/// The conversion from `u8` to `Choice` passes the value through an optimization
/// barrier, as a best-effort attempt to prevent the compiler from inferring that
/// the `Choice` value is a boolean. This strategy is based on Tim Maclean's
/// [work on `rust-timing-shield`][rust-timing-shield], which attempts to provide
/// a more comprehensive approach for preventing software side-channels in Rust
/// code.
///
/// The `Choice` struct implements operators for AND, OR, XOR, and NOT, to allow
/// combining `Choice` values. These operations do not short-circuit.
///
/// [rust-timing-shield]:
/// https://www.chosenplaintext.ca/open-source/rust-timing-shield/security
#[derive(Copy, Clone, Debug)]
pub struct Choice(u8);

impl Choice {
    /// Unwrap the `Choice` wrapper to reveal the underlying `u8`.
    ///
    /// # Note
    ///
    /// This function only exists as an **escape hatch** for the rare case
    /// where it's not possible to use one of the `subtle`-provided
    /// trait impls.
    ///
    /// **To convert a `Choice` to a `bool`, use the `From` implementation instead.**
    #[inline]
    pub fn unwrap_u8(&self) -> u8 {
        self.0
    }
}

impl From<Choice> for bool {
    /// Convert the `Choice` wrapper into a `bool`, depending on whether
    /// the underlying `u8` was a `0` or a `1`.
    ///
    /// # Note
    ///
    /// This function exists to avoid having higher-level cryptographic protocol
    /// implementations duplicating this pattern.
    ///
    /// The intended use case for this conversion is at the _end_ of a
    /// higher-level primitive implementation: for example, in checking a keyed
    /// MAC, where the verification should happen in constant-time (and thus use
    /// a `Choice`) but it is safe to return a `bool` at the end of the
    /// verification.
    #[inline]
    fn from(source: Choice) -> bool {
        debug_assert!((source.0 == 0u8) | (source.0 == 1u8));
        source.0 != 0
    }
}

impl BitAnd for Choice {
    type Output = Choice;
    #[inline]
    fn bitand(self, rhs: Choice) -> Choice {
        (self.0 & rhs.0).into()
    }
}

impl BitAndAssign for Choice {
    #[inline]
    fn bitand_assign(&mut self, rhs: Choice) {
        *self = *self & rhs;
    }
}

impl BitOr for Choice {
    type Output = Choice;
    #[inline]
    fn bitor(self, rhs: Choice) -> Choice {
        (self.0 | rhs.0).into()
    }
}

impl BitOrAssign for Choice {
    #[inline]
    fn bitor_assign(&mut self, rhs: Choice) {
        *self = *self | rhs;
    }
}

impl BitXor for Choice {
    type Output = Choice;
    #[inline]
    fn bitxor(self, rhs: Choice) -> Choice {
        (self.0 ^ rhs.0).into()
    }
}

impl BitXorAssign for Choice {
    #[inline]
    fn bitxor_assign(&mut self, rhs: Choice) {
        *self = *self ^ rhs;
    }
}

impl Not for Choice {
    type Output = Choice;
    #[inline]
    fn not(self) -> Choice {
        (1u8 & (!self.0)).into()
    }
}

/// This function is a best-effort attempt to prevent the compiler from knowing
/// anything about the value of the returned `u8`, other than its type.
///
/// Because we want to support stable Rust, we don't have access to inline
/// assembly or test::black_box, so we use the fact that volatile values will
/// never be elided to register values.
///
/// Note: Rust's notion of "volatile" is subject to change over time. While this
/// code may break in a non-destructive way in the future, “constant-time” code
/// is a continually moving target, and this is better than doing nothing.
#[cfg(not(feature = "core_hint_black_box"))]
#[inline(never)]
fn black_box(input: u8) -> u8 {
    debug_assert!((input == 0u8) | (input == 1u8));

    unsafe {
        // Optimization barrier
        //
        // Unsafe is ok, because:
        //   - &input is not NULL;
        //   - size of input is not zero;
        //   - u8 is neither Sync, nor Send;
        //   - u8 is Copy, so input is always live;
        //   - u8 type is always properly aligned.
        core::ptr::read_volatile(&input as *const u8)
    }
}

#[cfg(feature = "core_hint_black_box")]
#[inline(never)]
fn black_box(input: u8) -> u8 {
    debug_assert!((input == 0u8) | (input == 1u8));
    core::hint::black_box(input)
}

impl From<u8> for Choice {
    #[inline]
    fn from(input: u8) -> Choice {
        // Our goal is to prevent the compiler from inferring that the value held inside the
        // resulting `Choice` struct is really an `i1` instead of an `i8`.
        Choice(black_box(input))
    }
}

/// An `Eq`-like trait that produces a `Choice` instead of a `bool`.
///
/// # Example
///
/// ```
/// use subtle::ConstantTimeEq;
/// let x: u8 = 5;
/// let y: u8 = 13;
///
/// assert_eq!(x.ct_eq(&y).unwrap_u8(), 0);
/// assert_eq!(x.ct_eq(&x).unwrap_u8(), 1);
/// ```
pub trait ConstantTimeEq {
    /// Determine if two items are equal.
    ///
    /// The `ct_eq` function should execute in constant time.
    ///
    /// # Returns
    ///
    /// * `Choice(1u8)` if `self == other`;
    /// * `Choice(0u8)` if `self != other`.
    #[inline]
    fn ct_eq(&self, other: &Self) -> Choice;

    /// Determine if two items are NOT equal.
    ///
    /// The `ct_ne` function should execute in constant time.
    ///
    /// # Returns
    ///
    /// * `Choice(0u8)` if `self == other`;
    /// * `Choice(1u8)` if `self != other`.
    #[inline]
    fn ct_ne(&self, other: &Self) -> Choice {
        !self.ct_eq(other)
    }
}

impl<T: ConstantTimeEq> ConstantTimeEq for [T] {
    /// Check whether two slices of `ConstantTimeEq` types are equal.
    ///
    /// # Note
    ///
    /// This function short-circuits if the lengths of the input slices
    /// are different.  Otherwise, it should execute in time independent
    /// of the slice contents.
    ///
    /// Since arrays coerce to slices, this function works with fixed-size arrays:
    ///
    /// ```
    /// # use subtle::ConstantTimeEq;
    /// #
    /// let a: [u8; 8] = [0,1,2,3,4,5,6,7];
    /// let b: [u8; 8] = [0,1,2,3,0,1,2,3];
    ///
    /// let a_eq_a = a.ct_eq(&a);
    /// let a_eq_b = a.ct_eq(&b);
    ///
    /// assert_eq!(a_eq_a.unwrap_u8(), 1);
    /// assert_eq!(a_eq_b.unwrap_u8(), 0);
    /// ```
    #[inline]
    fn ct_eq(&self, _rhs: &[T]) -> Choice {
        let len = self.len();

        // Short-circuit on the *lengths* of the slices, not their
        // contents.
        if len != _rhs.len() {
            return Choice::from(0);
        }

        // This loop shouldn't be shortcircuitable, since the compiler
        // shouldn't be able to reason about the value of the `u8`
        // unwrapped from the `ct_eq` result.
        let mut x = 1u8;
        for (ai, bi) in self.iter().zip(_rhs.iter()) {
            x &= ai.ct_eq(bi).unwrap_u8();
        }

        x.into()
    }
}

impl ConstantTimeEq for Choice {
    #[inline]
    fn ct_eq(&self, rhs: &Choice) -> Choice {
        !(*self ^ *rhs)
    }
}

/// Given the bit-width `$bit_width` and the corresponding primitive
/// unsigned and signed types `$t_u` and `$t_i` respectively, generate
/// an `ConstantTimeEq` implementation.
macro_rules! generate_integer_equal {
    ($t_u:ty, $t_i:ty, $bit_width:expr) => {
        impl ConstantTimeEq for $t_u {
            #[inline]
            fn ct_eq(&self, other: &$t_u) -> Choice {
                // x == 0 if and only if self == other
                let x: $t_u = self ^ other;

                // If x == 0, then x and -x are both equal to zero;
                // otherwise, one or both will have its high bit set.
                let y: $t_u = (x | x.wrapping_neg()) >> ($bit_width - 1);

                // Result is the opposite of the high bit (now shifted to low).
                ((y ^ (1 as $t_u)) as u8).into()
            }
        }
        impl ConstantTimeEq for $t_i {
            #[inline]
            fn ct_eq(&self, other: &$t_i) -> Choice {
                // Bitcast to unsigned and call that implementation.
                (*self as $t_u).ct_eq(&(*other as $t_u))
            }
        }
    };
}

generate_integer_equal!(u8, i8, 8);
generate_integer_equal!(u16, i16, 16);
generate_integer_equal!(u32, i32, 32);
generate_integer_equal!(u64, i64, 64);
#[cfg(feature = "i128")]
generate_integer_equal!(u128, i128, 128);
generate_integer_equal!(usize, isize, ::core::mem::size_of::<usize>() * 8);

/// `Ordering` is `#[repr(i8)]` making it possible to leverage `i8::ct_eq`.
impl ConstantTimeEq for cmp::Ordering {
    #[inline]
    fn ct_eq(&self, other: &Self) -> Choice {
        (*self as i8).ct_eq(&(*other as i8))
    }
}

/// A type which can be conditionally selected in constant time.
///
/// This trait also provides generic implementations of conditional
/// assignment and conditional swaps.
pub trait ConditionallySelectable: Copy {
    /// Select `a` or `b` according to `choice`.
    ///
    /// # Returns
    ///
    /// * `a` if `choice == Choice(0)`;
    /// * `b` if `choice == Choice(1)`.
    ///
    /// This function should execute in constant time.
    ///
    /// # Example
    ///
    /// ```
    /// use subtle::ConditionallySelectable;
    /// #
    /// # fn main() {
    /// let x: u8 = 13;
    /// let y: u8 = 42;
    ///
    /// let z = u8::conditional_select(&x, &y, 0.into());
    /// assert_eq!(z, x);
    /// let z = u8::conditional_select(&x, &y, 1.into());
    /// assert_eq!(z, y);
    /// # }
    /// ```
    #[inline]
    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self;

    /// Conditionally assign `other` to `self`, according to `choice`.
    ///
    /// This function should execute in constant time.
    ///
    /// # Example
    ///
    /// ```
    /// use subtle::ConditionallySelectable;
    /// #
    /// # fn main() {
    /// let mut x: u8 = 13;
    /// let mut y: u8 = 42;
    ///
    /// x.conditional_assign(&y, 0.into());
    /// assert_eq!(x, 13);
    /// x.conditional_assign(&y, 1.into());
    /// assert_eq!(x, 42);
    /// # }
    /// ```
    #[inline]
    fn conditional_assign(&mut self, other: &Self, choice: Choice) {
        *self = Self::conditional_select(self, other, choice);
    }

    /// Conditionally swap `self` and `other` if `choice == 1`; otherwise,
    /// reassign both unto themselves.
    ///
    /// This function should execute in constant time.
    ///
    /// # Example
    ///
    /// ```
    /// use subtle::ConditionallySelectable;
    /// #
    /// # fn main() {
    /// let mut x: u8 = 13;
    /// let mut y: u8 = 42;
    ///
    /// u8::conditional_swap(&mut x, &mut y, 0.into());
    /// assert_eq!(x, 13);
    /// assert_eq!(y, 42);
    /// u8::conditional_swap(&mut x, &mut y, 1.into());
    /// assert_eq!(x, 42);
    /// assert_eq!(y, 13);
    /// # }
    /// ```
    #[inline]
    fn conditional_swap(a: &mut Self, b: &mut Self, choice: Choice) {
        let t: Self = *a;
        a.conditional_assign(&b, choice);
        b.conditional_assign(&t, choice);
    }
}

macro_rules! to_signed_int {
    (u8) => {
        i8
    };
    (u16) => {
        i16
    };
    (u32) => {
        i32
    };
    (u64) => {
        i64
    };
    (u128) => {
        i128
    };
    (i8) => {
        i8
    };
    (i16) => {
        i16
    };
    (i32) => {
        i32
    };
    (i64) => {
        i64
    };
    (i128) => {
        i128
    };
}

macro_rules! generate_integer_conditional_select {
    ($($t:tt)*) => ($(
        impl ConditionallySelectable for $t {
            #[inline]
            fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
                // if choice = 0, mask = (-0) = 0000...0000
                // if choice = 1, mask = (-1) = 1111...1111
                let mask = -(choice.unwrap_u8() as to_signed_int!($t)) as $t;
                a ^ (mask & (a ^ b))
            }

            #[inline]
            fn conditional_assign(&mut self, other: &Self, choice: Choice) {
                // if choice = 0, mask = (-0) = 0000...0000
                // if choice = 1, mask = (-1) = 1111...1111
                let mask = -(choice.unwrap_u8() as to_signed_int!($t)) as $t;
                *self ^= mask & (*self ^ *other);
            }

            #[inline]
            fn conditional_swap(a: &mut Self, b: &mut Self, choice: Choice) {
                // if choice = 0, mask = (-0) = 0000...0000
                // if choice = 1, mask = (-1) = 1111...1111
                let mask = -(choice.unwrap_u8() as to_signed_int!($t)) as $t;
                let t = mask & (*a ^ *b);
                *a ^= t;
                *b ^= t;
            }
         }
    )*)
}

generate_integer_conditional_select!(  u8   i8);
generate_integer_conditional_select!( u16  i16);
generate_integer_conditional_select!( u32  i32);
generate_integer_conditional_select!( u64  i64);
#[cfg(feature = "i128")]
generate_integer_conditional_select!(u128 i128);

/// `Ordering` is `#[repr(i8)]` where:
///
/// - `Less` => -1
/// - `Equal` => 0
/// - `Greater` => 1
///
/// Given this, it's possible to operate on orderings as if they're integers,
/// which allows leveraging conditional masking for predication.
impl ConditionallySelectable for cmp::Ordering {
    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
        let a = *a as i8;
        let b = *b as i8;
        let ret = i8::conditional_select(&a, &b, choice);

        // SAFETY: `Ordering` is `#[repr(i8)]` and `ret` has been assigned to
        // a value which was originally a valid `Ordering` then cast to `i8`
        unsafe { *((&ret as *const _) as *const cmp::Ordering) }
    }
}

impl ConditionallySelectable for Choice {
    #[inline]
    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
        Choice(u8::conditional_select(&a.0, &b.0, choice))
    }
}

#[cfg(feature = "const-generics")]
impl<T, const N: usize> ConditionallySelectable for [T; N]
where
    T: ConditionallySelectable,
{
    #[inline]
    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
        let mut output = *a;
        output.conditional_assign(b, choice);
        output
    }

    fn conditional_assign(&mut self, other: &Self, choice: Choice) {
        for (a_i, b_i) in self.iter_mut().zip(other) {
            a_i.conditional_assign(b_i, choice)
        }
    }
}

/// A type which can be conditionally negated in constant time.
///
/// # Note
///
/// A generic implementation of `ConditionallyNegatable` is provided
/// for types `T` which are `ConditionallySelectable` and have `Neg`
/// implemented on `&T`.
pub trait ConditionallyNegatable {
    /// Negate `self` if `choice == Choice(1)`; otherwise, leave it
    /// unchanged.
    ///
    /// This function should execute in constant time.
    #[inline]
    fn conditional_negate(&mut self, choice: Choice);
}

impl<T> ConditionallyNegatable for T
where
    T: ConditionallySelectable,
    for<'a> &'a T: Neg<Output = T>,
{
    #[inline]
    fn conditional_negate(&mut self, choice: Choice) {
        // Need to cast to eliminate mutability
        let self_neg: T = -(self as &T);
        self.conditional_assign(&self_neg, choice);
    }
}

/// The `CtOption<T>` type represents an optional value similar to the
/// [`Option<T>`](core::option::Option) type but is intended for
/// use in constant time APIs.
///
/// Any given `CtOption<T>` is either `Some` or `None`, but unlike
/// `Option<T>` these variants are not exposed. The
/// [`is_some()`](CtOption::is_some) method is used to determine if
/// the value is `Some`, and [`unwrap_or()`](CtOption::unwrap_or) and
/// [`unwrap_or_else()`](CtOption::unwrap_or_else) methods are
/// provided to access the underlying value. The value can also be
/// obtained with [`unwrap()`](CtOption::unwrap) but this will panic
/// if it is `None`.
///
/// Functions that are intended to be constant time may not produce
/// valid results for all inputs, such as square root and inversion
/// operations in finite field arithmetic. Returning an `Option<T>`
/// from these functions makes it difficult for the caller to reason
/// about the result in constant time, and returning an incorrect
/// value burdens the caller and increases the chance of bugs.
#[derive(Clone, Copy, Debug)]
pub struct CtOption<T> {
    value: T,
    is_some: Choice,
}

impl<T> From<CtOption<T>> for Option<T> {
    /// Convert the `CtOption<T>` wrapper into an `Option<T>`, depending on whether
    /// the underlying `is_some` `Choice` was a `0` or a `1` once unwrapped.
    ///
    /// # Note
    ///
    /// This function exists to avoid ending up with ugly, verbose and/or bad handled
    /// conversions from the `CtOption<T>` wraps to an `Option<T>` or `Result<T, E>`.
    /// This implementation doesn't intend to be constant-time nor try to protect the
    /// leakage of the `T` since the `Option<T>` will do it anyways.
    fn from(source: CtOption<T>) -> Option<T> {
        if source.is_some().unwrap_u8() == 1u8 {
            Option::Some(source.value)
        } else {
            None
        }
    }
}

impl<T> CtOption<T> {
    /// This method is used to construct a new `CtOption<T>` and takes
    /// a value of type `T`, and a `Choice` that determines whether
    /// the optional value should be `Some` or not. If `is_some` is
    /// false, the value will still be stored but its value is never
    /// exposed.
    #[inline]
    pub fn new(value: T, is_some: Choice) -> CtOption<T> {
        CtOption {
            value: value,
            is_some: is_some,
        }
    }

    /// Returns the contained value, consuming the `self` value.
    ///
    /// # Panics
    ///
    /// Panics if the value is none with a custom panic message provided by
    /// `msg`.
    pub fn expect(self, msg: &str) -> T {
        assert_eq!(self.is_some.unwrap_u8(), 1, "{}", msg);

        self.value
    }

    /// This returns the underlying value but panics if it
    /// is not `Some`.
    #[inline]
    pub fn unwrap(self) -> T {
        assert_eq!(self.is_some.unwrap_u8(), 1);

        self.value
    }

    /// This returns the underlying value if it is `Some`
    /// or the provided value otherwise.
    #[inline]
    pub fn unwrap_or(self, def: T) -> T
    where
        T: ConditionallySelectable,
    {
        T::conditional_select(&def, &self.value, self.is_some)
    }

    /// This returns the underlying value if it is `Some`
    /// or the value produced by the provided closure otherwise.
    ///
    /// This operates in constant time, because the provided closure
    /// is always called.
    #[inline]
    pub fn unwrap_or_else<F>(self, f: F) -> T
    where
        T: ConditionallySelectable,
        F: FnOnce() -> T,
    {
        T::conditional_select(&f(), &self.value, self.is_some)
    }

    /// Returns a true `Choice` if this value is `Some`.
    #[inline]
    pub fn is_some(&self) -> Choice {
        self.is_some
    }

    /// Returns a true `Choice` if this value is `None`.
    #[inline]
    pub fn is_none(&self) -> Choice {
        !self.is_some
    }

    /// Returns a `None` value if the option is `None`, otherwise
    /// returns a `CtOption` enclosing the value of the provided closure.
    /// The closure is given the enclosed value or, if the option is
    /// `None`, it is provided a dummy value computed using
    /// `Default::default()`.
    ///
    /// This operates in constant time, because the provided closure
    /// is always called.
    #[inline]
    pub fn map<U, F>(self, f: F) -> CtOption<U>
    where
        T: Default + ConditionallySelectable,
        F: FnOnce(T) -> U,
    {
        CtOption::new(
            f(T::conditional_select(
                &T::default(),
                &self.value,
                self.is_some,
            )),
            self.is_some,
        )
    }

    /// Returns a `None` value if the option is `None`, otherwise
    /// returns the result of the provided closure. The closure is
    /// given the enclosed value or, if the option is `None`, it
    /// is provided a dummy value computed using `Default::default()`.
    ///
    /// This operates in constant time, because the provided closure
    /// is always called.
    #[inline]
    pub fn and_then<U, F>(self, f: F) -> CtOption<U>
    where
        T: Default + ConditionallySelectable,
        F: FnOnce(T) -> CtOption<U>,
    {
        let mut tmp = f(T::conditional_select(
            &T::default(),
            &self.value,
            self.is_some,
        ));
        tmp.is_some &= self.is_some;

        tmp
    }

    /// Returns `self` if it contains a value, and otherwise returns the result of
    /// calling `f`. The provided function `f` is always called.
    #[inline]
    pub fn or_else<F>(self, f: F) -> CtOption<T>
    where
        T: ConditionallySelectable,
        F: FnOnce() -> CtOption<T>,
    {
        let is_none = self.is_none();
        let f = f();

        Self::conditional_select(&self, &f, is_none)
    }
}

impl<T: ConditionallySelectable> ConditionallySelectable for CtOption<T> {
    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
        CtOption::new(
            T::conditional_select(&a.value, &b.value, choice),
            Choice::conditional_select(&a.is_some, &b.is_some, choice),
        )
    }
}

impl<T: ConstantTimeEq> ConstantTimeEq for CtOption<T> {
    /// Two `CtOption<T>`s are equal if they are both `Some` and
    /// their values are equal, or both `None`.
    #[inline]
    fn ct_eq(&self, rhs: &CtOption<T>) -> Choice {
        let a = self.is_some();
        let b = rhs.is_some();

        (a & b & self.value.ct_eq(&rhs.value)) | (!a & !b)
    }
}

/// A type which can be compared in some manner and be determined to be greater
/// than another of the same type.
pub trait ConstantTimeGreater {
    /// Determine whether `self > other`.
    ///
    /// The bitwise-NOT of the return value of this function should be usable to
    /// determine if `self <= other`.
    ///
    /// This function should execute in constant time.
    ///
    /// # Returns
    ///
    /// A `Choice` with a set bit if `self > other`, and with no set bits
    /// otherwise.
    ///
    /// # Example
    ///
    /// ```
    /// use subtle::ConstantTimeGreater;
    ///
    /// let x: u8 = 13;
    /// let y: u8 = 42;
    ///
    /// let x_gt_y = x.ct_gt(&y);
    ///
    /// assert_eq!(x_gt_y.unwrap_u8(), 0);
    ///
    /// let y_gt_x = y.ct_gt(&x);
    ///
    /// assert_eq!(y_gt_x.unwrap_u8(), 1);
    ///
    /// let x_gt_x = x.ct_gt(&x);
    ///
    /// assert_eq!(x_gt_x.unwrap_u8(), 0);
    /// ```
    fn ct_gt(&self, other: &Self) -> Choice;
}

macro_rules! generate_unsigned_integer_greater {
    ($t_u: ty, $bit_width: expr) => {
        impl ConstantTimeGreater for $t_u {
            /// Returns Choice::from(1) iff x > y, and Choice::from(0) iff x <= y.
            ///
            /// # Note
            ///
            /// This algoritm would also work for signed integers if we first
            /// flip the top bit, e.g. `let x: u8 = x ^ 0x80`, etc.
            #[inline]
            fn ct_gt(&self, other: &$t_u) -> Choice {
                let gtb = self & !other; // All the bits in self that are greater than their corresponding bits in other.
                let mut ltb = !self & other; // All the bits in self that are less than their corresponding bits in other.
                let mut pow = 1;

                // Less-than operator is okay here because it's dependent on the bit-width.
                while pow < $bit_width {
                    ltb |= ltb >> pow; // Bit-smear the highest set bit to the right.
                    pow += pow;
                }
                let mut bit = gtb & !ltb; // Select the highest set bit.
                let mut pow = 1;

                while pow < $bit_width {
                    bit |= bit >> pow; // Shift it to the right until we end up with either 0 or 1.
                    pow += pow;
                }
                // XXX We should possibly do the above flattening to 0 or 1 in the
                //     Choice constructor rather than making it a debug error?
                Choice::from((bit & 1) as u8)
            }
        }
    };
}

generate_unsigned_integer_greater!(u8, 8);
generate_unsigned_integer_greater!(u16, 16);
generate_unsigned_integer_greater!(u32, 32);
generate_unsigned_integer_greater!(u64, 64);
#[cfg(feature = "i128")]
generate_unsigned_integer_greater!(u128, 128);

impl ConstantTimeGreater for cmp::Ordering {
    #[inline]
    fn ct_gt(&self, other: &Self) -> Choice {
        // No impl of `ConstantTimeGreater` for `i8`, so use `u8`
        let a = (*self as i8) + 1;
        let b = (*other as i8) + 1;
        (a as u8).ct_gt(&(b as u8))
    }
}

/// A type which can be compared in some manner and be determined to be less
/// than another of the same type.
pub trait ConstantTimeLess: ConstantTimeEq + ConstantTimeGreater {
    /// Determine whether `self < other`.
    ///
    /// The bitwise-NOT of the return value of this function should be usable to
    /// determine if `self >= other`.
    ///
    /// A default implementation is provided and implemented for the unsigned
    /// integer types.
    ///
    /// This function should execute in constant time.
    ///
    /// # Returns
    ///
    /// A `Choice` with a set bit if `self < other`, and with no set bits
    /// otherwise.
    ///
    /// # Example
    ///
    /// ```
    /// use subtle::ConstantTimeLess;
    ///
    /// let x: u8 = 13;
    /// let y: u8 = 42;
    ///
    /// let x_lt_y = x.ct_lt(&y);
    ///
    /// assert_eq!(x_lt_y.unwrap_u8(), 1);
    ///
    /// let y_lt_x = y.ct_lt(&x);
    ///
    /// assert_eq!(y_lt_x.unwrap_u8(), 0);
    ///
    /// let x_lt_x = x.ct_lt(&x);
    ///
    /// assert_eq!(x_lt_x.unwrap_u8(), 0);
    /// ```
    #[inline]
    fn ct_lt(&self, other: &Self) -> Choice {
        !self.ct_gt(other) & !self.ct_eq(other)
    }
}

impl ConstantTimeLess for u8 {}
impl ConstantTimeLess for u16 {}
impl ConstantTimeLess for u32 {}
impl ConstantTimeLess for u64 {}
#[cfg(feature = "i128")]
impl ConstantTimeLess for u128 {}

impl ConstantTimeLess for cmp::Ordering {
    #[inline]
    fn ct_lt(&self, other: &Self) -> Choice {
        // No impl of `ConstantTimeLess` for `i8`, so use `u8`
        let a = (*self as i8) + 1;
        let b = (*other as i8) + 1;
        (a as u8).ct_lt(&(b as u8))
    }
}