syn/
parse.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
//! Parsing interface for parsing a token stream into a syntax tree node.
//!
//! Parsing in Syn is built on parser functions that take in a [`ParseStream`]
//! and produce a [`Result<T>`] where `T` is some syntax tree node. Underlying
//! these parser functions is a lower level mechanism built around the
//! [`Cursor`] type. `Cursor` is a cheaply copyable cursor over a range of
//! tokens in a token stream.
//!
//! [`Result<T>`]: Result
//! [`Cursor`]: crate::buffer::Cursor
//!
//! # Example
//!
//! Here is a snippet of parsing code to get a feel for the style of the
//! library. We define data structures for a subset of Rust syntax including
//! enums (not shown) and structs, then provide implementations of the [`Parse`]
//! trait to parse these syntax tree data structures from a token stream.
//!
//! Once `Parse` impls have been defined, they can be called conveniently from a
//! procedural macro through [`parse_macro_input!`] as shown at the bottom of
//! the snippet. If the caller provides syntactically invalid input to the
//! procedural macro, they will receive a helpful compiler error message
//! pointing out the exact token that triggered the failure to parse.
//!
//! [`parse_macro_input!`]: crate::parse_macro_input!
//!
//! ```
//! # extern crate proc_macro;
//! #
//! use proc_macro::TokenStream;
//! use syn::{braced, parse_macro_input, token, Field, Ident, Result, Token};
//! use syn::parse::{Parse, ParseStream};
//! use syn::punctuated::Punctuated;
//!
//! enum Item {
//!     Struct(ItemStruct),
//!     Enum(ItemEnum),
//! }
//!
//! struct ItemStruct {
//!     struct_token: Token![struct],
//!     ident: Ident,
//!     brace_token: token::Brace,
//!     fields: Punctuated<Field, Token![,]>,
//! }
//! #
//! # enum ItemEnum {}
//!
//! impl Parse for Item {
//!     fn parse(input: ParseStream) -> Result<Self> {
//!         let lookahead = input.lookahead1();
//!         if lookahead.peek(Token![struct]) {
//!             input.parse().map(Item::Struct)
//!         } else if lookahead.peek(Token![enum]) {
//!             input.parse().map(Item::Enum)
//!         } else {
//!             Err(lookahead.error())
//!         }
//!     }
//! }
//!
//! impl Parse for ItemStruct {
//!     fn parse(input: ParseStream) -> Result<Self> {
//!         let content;
//!         Ok(ItemStruct {
//!             struct_token: input.parse()?,
//!             ident: input.parse()?,
//!             brace_token: braced!(content in input),
//!             fields: content.parse_terminated(Field::parse_named, Token![,])?,
//!         })
//!     }
//! }
//! #
//! # impl Parse for ItemEnum {
//! #     fn parse(input: ParseStream) -> Result<Self> {
//! #         unimplemented!()
//! #     }
//! # }
//!
//! # const IGNORE: &str = stringify! {
//! #[proc_macro]
//! # };
//! pub fn my_macro(tokens: TokenStream) -> TokenStream {
//!     let input = parse_macro_input!(tokens as Item);
//!
//!     /* ... */
//! #   TokenStream::new()
//! }
//! ```
//!
//! # The `syn::parse*` functions
//!
//! The [`syn::parse`], [`syn::parse2`], and [`syn::parse_str`] functions serve
//! as an entry point for parsing syntax tree nodes that can be parsed in an
//! obvious default way. These functions can return any syntax tree node that
//! implements the [`Parse`] trait, which includes most types in Syn.
//!
//! [`syn::parse`]: crate::parse()
//! [`syn::parse2`]: crate::parse2()
//! [`syn::parse_str`]: crate::parse_str()
//!
//! ```
//! use syn::Type;
//!
//! # fn run_parser() -> syn::Result<()> {
//! let t: Type = syn::parse_str("std::collections::HashMap<String, Value>")?;
//! #     Ok(())
//! # }
//! #
//! # run_parser().unwrap();
//! ```
//!
//! The [`parse_quote!`] macro also uses this approach.
//!
//! [`parse_quote!`]: crate::parse_quote!
//!
//! # The `Parser` trait
//!
//! Some types can be parsed in several ways depending on context. For example
//! an [`Attribute`] can be either "outer" like `#[...]` or "inner" like
//! `#![...]` and parsing the wrong one would be a bug. Similarly [`Punctuated`]
//! may or may not allow trailing punctuation, and parsing it the wrong way
//! would either reject valid input or accept invalid input.
//!
//! [`Attribute`]: crate::Attribute
//! [`Punctuated`]: crate::punctuated
//!
//! The `Parse` trait is not implemented in these cases because there is no good
//! behavior to consider the default.
//!
//! ```compile_fail
//! # extern crate proc_macro;
//! #
//! # use syn::punctuated::Punctuated;
//! # use syn::{PathSegment, Result, Token};
//! #
//! # fn f(tokens: proc_macro::TokenStream) -> Result<()> {
//! #
//! // Can't parse `Punctuated` without knowing whether trailing punctuation
//! // should be allowed in this context.
//! let path: Punctuated<PathSegment, Token![::]> = syn::parse(tokens)?;
//! #
//! #     Ok(())
//! # }
//! ```
//!
//! In these cases the types provide a choice of parser functions rather than a
//! single `Parse` implementation, and those parser functions can be invoked
//! through the [`Parser`] trait.
//!
//!
//! ```
//! # extern crate proc_macro;
//! #
//! use proc_macro::TokenStream;
//! use syn::parse::Parser;
//! use syn::punctuated::Punctuated;
//! use syn::{Attribute, Expr, PathSegment, Result, Token};
//!
//! fn call_some_parser_methods(input: TokenStream) -> Result<()> {
//!     // Parse a nonempty sequence of path segments separated by `::` punctuation
//!     // with no trailing punctuation.
//!     let tokens = input.clone();
//!     let parser = Punctuated::<PathSegment, Token![::]>::parse_separated_nonempty;
//!     let _path = parser.parse(tokens)?;
//!
//!     // Parse a possibly empty sequence of expressions terminated by commas with
//!     // an optional trailing punctuation.
//!     let tokens = input.clone();
//!     let parser = Punctuated::<Expr, Token![,]>::parse_terminated;
//!     let _args = parser.parse(tokens)?;
//!
//!     // Parse zero or more outer attributes but not inner attributes.
//!     let tokens = input.clone();
//!     let parser = Attribute::parse_outer;
//!     let _attrs = parser.parse(tokens)?;
//!
//!     Ok(())
//! }
//! ```

#[path = "discouraged.rs"]
pub mod discouraged;

use crate::buffer::{Cursor, TokenBuffer};
use crate::error;
use crate::lookahead;
use crate::punctuated::Punctuated;
use crate::token::Token;
use proc_macro2::{Delimiter, Group, Literal, Punct, Span, TokenStream, TokenTree};
#[cfg(feature = "printing")]
use quote::ToTokens;
use std::cell::Cell;
use std::fmt::{self, Debug, Display};
#[cfg(feature = "extra-traits")]
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
use std::mem;
use std::ops::Deref;
use std::panic::{RefUnwindSafe, UnwindSafe};
use std::rc::Rc;
use std::str::FromStr;

pub use crate::error::{Error, Result};
pub use crate::lookahead::{Lookahead1, Peek};

/// Parsing interface implemented by all types that can be parsed in a default
/// way from a token stream.
///
/// Refer to the [module documentation] for details about implementing and using
/// the `Parse` trait.
///
/// [module documentation]: self
pub trait Parse: Sized {
    fn parse(input: ParseStream) -> Result<Self>;
}

/// Input to a Syn parser function.
///
/// See the methods of this type under the documentation of [`ParseBuffer`]. For
/// an overview of parsing in Syn, refer to the [module documentation].
///
/// [module documentation]: self
pub type ParseStream<'a> = &'a ParseBuffer<'a>;

/// Cursor position within a buffered token stream.
///
/// This type is more commonly used through the type alias [`ParseStream`] which
/// is an alias for `&ParseBuffer`.
///
/// `ParseStream` is the input type for all parser functions in Syn. They have
/// the signature `fn(ParseStream) -> Result<T>`.
///
/// ## Calling a parser function
///
/// There is no public way to construct a `ParseBuffer`. Instead, if you are
/// looking to invoke a parser function that requires `ParseStream` as input,
/// you will need to go through one of the public parsing entry points.
///
/// - The [`parse_macro_input!`] macro if parsing input of a procedural macro;
/// - One of [the `syn::parse*` functions][syn-parse]; or
/// - A method of the [`Parser`] trait.
///
/// [`parse_macro_input!`]: crate::parse_macro_input!
/// [syn-parse]: self#the-synparse-functions
pub struct ParseBuffer<'a> {
    scope: Span,
    // Instead of Cell<Cursor<'a>> so that ParseBuffer<'a> is covariant in 'a.
    // The rest of the code in this module needs to be careful that only a
    // cursor derived from this `cell` is ever assigned to this `cell`.
    //
    // Cell<Cursor<'a>> cannot be covariant in 'a because then we could take a
    // ParseBuffer<'a>, upcast to ParseBuffer<'short> for some lifetime shorter
    // than 'a, and then assign a Cursor<'short> into the Cell.
    //
    // By extension, it would not be safe to expose an API that accepts a
    // Cursor<'a> and trusts that it lives as long as the cursor currently in
    // the cell.
    cell: Cell<Cursor<'static>>,
    marker: PhantomData<Cursor<'a>>,
    unexpected: Cell<Option<Rc<Cell<Unexpected>>>>,
}

impl<'a> Drop for ParseBuffer<'a> {
    fn drop(&mut self) {
        if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(self.cursor()) {
            let (inner, old_span) = inner_unexpected(self);
            if old_span.is_none() {
                inner.set(Unexpected::Some(unexpected_span));
            }
        }
    }
}

impl<'a> Display for ParseBuffer<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        Display::fmt(&self.cursor().token_stream(), f)
    }
}

impl<'a> Debug for ParseBuffer<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        Debug::fmt(&self.cursor().token_stream(), f)
    }
}

impl<'a> UnwindSafe for ParseBuffer<'a> {}
impl<'a> RefUnwindSafe for ParseBuffer<'a> {}

/// Cursor state associated with speculative parsing.
///
/// This type is the input of the closure provided to [`ParseStream::step`].
///
/// [`ParseStream::step`]: ParseBuffer::step
///
/// # Example
///
/// ```
/// use proc_macro2::TokenTree;
/// use syn::Result;
/// use syn::parse::ParseStream;
///
/// // This function advances the stream past the next occurrence of `@`. If
/// // no `@` is present in the stream, the stream position is unchanged and
/// // an error is returned.
/// fn skip_past_next_at(input: ParseStream) -> Result<()> {
///     input.step(|cursor| {
///         let mut rest = *cursor;
///         while let Some((tt, next)) = rest.token_tree() {
///             match &tt {
///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
///                     return Ok(((), next));
///                 }
///                 _ => rest = next,
///             }
///         }
///         Err(cursor.error("no `@` was found after this point"))
///     })
/// }
/// #
/// # fn remainder_after_skipping_past_next_at(
/// #     input: ParseStream,
/// # ) -> Result<proc_macro2::TokenStream> {
/// #     skip_past_next_at(input)?;
/// #     input.parse()
/// # }
/// #
/// # use syn::parse::Parser;
/// # let remainder = remainder_after_skipping_past_next_at
/// #     .parse_str("a @ b c")
/// #     .unwrap();
/// # assert_eq!(remainder.to_string(), "b c");
/// ```
pub struct StepCursor<'c, 'a> {
    scope: Span,
    // This field is covariant in 'c.
    cursor: Cursor<'c>,
    // This field is contravariant in 'c. Together these make StepCursor
    // invariant in 'c. Also covariant in 'a. The user cannot cast 'c to a
    // different lifetime but can upcast into a StepCursor with a shorter
    // lifetime 'a.
    //
    // As long as we only ever construct a StepCursor for which 'c outlives 'a,
    // this means if ever a StepCursor<'c, 'a> exists we are guaranteed that 'c
    // outlives 'a.
    marker: PhantomData<fn(Cursor<'c>) -> Cursor<'a>>,
}

impl<'c, 'a> Deref for StepCursor<'c, 'a> {
    type Target = Cursor<'c>;

    fn deref(&self) -> &Self::Target {
        &self.cursor
    }
}

impl<'c, 'a> Copy for StepCursor<'c, 'a> {}

impl<'c, 'a> Clone for StepCursor<'c, 'a> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<'c, 'a> StepCursor<'c, 'a> {
    /// Triggers an error at the current position of the parse stream.
    ///
    /// The `ParseStream::step` invocation will return this same error without
    /// advancing the stream state.
    pub fn error<T: Display>(self, message: T) -> Error {
        error::new_at(self.scope, self.cursor, message)
    }
}

pub(crate) fn advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a> {
    // Refer to the comments within the StepCursor definition. We use the
    // fact that a StepCursor<'c, 'a> exists as proof that 'c outlives 'a.
    // Cursor is covariant in its lifetime parameter so we can cast a
    // Cursor<'c> to one with the shorter lifetime Cursor<'a>.
    let _ = proof;
    unsafe { mem::transmute::<Cursor<'c>, Cursor<'a>>(to) }
}

pub(crate) fn new_parse_buffer(
    scope: Span,
    cursor: Cursor,
    unexpected: Rc<Cell<Unexpected>>,
) -> ParseBuffer {
    ParseBuffer {
        scope,
        // See comment on `cell` in the struct definition.
        cell: Cell::new(unsafe { mem::transmute::<Cursor, Cursor<'static>>(cursor) }),
        marker: PhantomData,
        unexpected: Cell::new(Some(unexpected)),
    }
}

pub(crate) enum Unexpected {
    None,
    Some(Span),
    Chain(Rc<Cell<Unexpected>>),
}

impl Default for Unexpected {
    fn default() -> Self {
        Unexpected::None
    }
}

impl Clone for Unexpected {
    fn clone(&self) -> Self {
        match self {
            Unexpected::None => Unexpected::None,
            Unexpected::Some(span) => Unexpected::Some(*span),
            Unexpected::Chain(next) => Unexpected::Chain(next.clone()),
        }
    }
}

// We call this on Cell<Unexpected> and Cell<Option<T>> where temporarily
// swapping in a None is cheap.
fn cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T {
    let prev = cell.take();
    let ret = prev.clone();
    cell.set(prev);
    ret
}

fn inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<Span>) {
    let mut unexpected = get_unexpected(buffer);
    loop {
        match cell_clone(&unexpected) {
            Unexpected::None => return (unexpected, None),
            Unexpected::Some(span) => return (unexpected, Some(span)),
            Unexpected::Chain(next) => unexpected = next,
        }
    }
}

pub(crate) fn get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>> {
    cell_clone(&buffer.unexpected).unwrap()
}

fn span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<Span> {
    if cursor.eof() {
        return None;
    }
    while let Some((inner, _span, rest)) = cursor.group(Delimiter::None) {
        if let Some(unexpected) = span_of_unexpected_ignoring_nones(inner) {
            return Some(unexpected);
        }
        cursor = rest;
    }
    if cursor.eof() {
        None
    } else {
        Some(cursor.span())
    }
}

impl<'a> ParseBuffer<'a> {
    /// Parses a syntax tree node of type `T`, advancing the position of our
    /// parse stream past it.
    pub fn parse<T: Parse>(&self) -> Result<T> {
        T::parse(self)
    }

    /// Calls the given parser function to parse a syntax tree node of type `T`
    /// from this stream.
    ///
    /// # Example
    ///
    /// The parser below invokes [`Attribute::parse_outer`] to parse a vector of
    /// zero or more outer attributes.
    ///
    /// [`Attribute::parse_outer`]: crate::Attribute::parse_outer
    ///
    /// ```
    /// use syn::{Attribute, Ident, Result, Token};
    /// use syn::parse::{Parse, ParseStream};
    ///
    /// // Parses a unit struct with attributes.
    /// //
    /// //     #[path = "s.tmpl"]
    /// //     struct S;
    /// struct UnitStruct {
    ///     attrs: Vec<Attribute>,
    ///     struct_token: Token![struct],
    ///     name: Ident,
    ///     semi_token: Token![;],
    /// }
    ///
    /// impl Parse for UnitStruct {
    ///     fn parse(input: ParseStream) -> Result<Self> {
    ///         Ok(UnitStruct {
    ///             attrs: input.call(Attribute::parse_outer)?,
    ///             struct_token: input.parse()?,
    ///             name: input.parse()?,
    ///             semi_token: input.parse()?,
    ///         })
    ///     }
    /// }
    /// ```
    pub fn call<T>(&self, function: fn(ParseStream) -> Result<T>) -> Result<T> {
        function(self)
    }

    /// Looks at the next token in the parse stream to determine whether it
    /// matches the requested type of token.
    ///
    /// Does not advance the position of the parse stream.
    ///
    /// # Syntax
    ///
    /// Note that this method does not use turbofish syntax. Pass the peek type
    /// inside of parentheses.
    ///
    /// - `input.peek(Token![struct])`
    /// - `input.peek(Token![==])`
    /// - `input.peek(syn::Ident)`&emsp;*(does not accept keywords)*
    /// - `input.peek(syn::Ident::peek_any)`
    /// - `input.peek(Lifetime)`
    /// - `input.peek(token::Brace)`
    ///
    /// # Example
    ///
    /// In this example we finish parsing the list of supertraits when the next
    /// token in the input is either `where` or an opening curly brace.
    ///
    /// ```
    /// use syn::{braced, token, Generics, Ident, Result, Token, TypeParamBound};
    /// use syn::parse::{Parse, ParseStream};
    /// use syn::punctuated::Punctuated;
    ///
    /// // Parses a trait definition containing no associated items.
    /// //
    /// //     trait Marker<'de, T>: A + B<'de> where Box<T>: Clone {}
    /// struct MarkerTrait {
    ///     trait_token: Token![trait],
    ///     ident: Ident,
    ///     generics: Generics,
    ///     colon_token: Option<Token![:]>,
    ///     supertraits: Punctuated<TypeParamBound, Token![+]>,
    ///     brace_token: token::Brace,
    /// }
    ///
    /// impl Parse for MarkerTrait {
    ///     fn parse(input: ParseStream) -> Result<Self> {
    ///         let trait_token: Token![trait] = input.parse()?;
    ///         let ident: Ident = input.parse()?;
    ///         let mut generics: Generics = input.parse()?;
    ///         let colon_token: Option<Token![:]> = input.parse()?;
    ///
    ///         let mut supertraits = Punctuated::new();
    ///         if colon_token.is_some() {
    ///             loop {
    ///                 supertraits.push_value(input.parse()?);
    ///                 if input.peek(Token![where]) || input.peek(token::Brace) {
    ///                     break;
    ///                 }
    ///                 supertraits.push_punct(input.parse()?);
    ///             }
    ///         }
    ///
    ///         generics.where_clause = input.parse()?;
    ///         let content;
    ///         let empty_brace_token = braced!(content in input);
    ///
    ///         Ok(MarkerTrait {
    ///             trait_token,
    ///             ident,
    ///             generics,
    ///             colon_token,
    ///             supertraits,
    ///             brace_token: empty_brace_token,
    ///         })
    ///     }
    /// }
    /// ```
    pub fn peek<T: Peek>(&self, token: T) -> bool {
        let _ = token;
        T::Token::peek(self.cursor())
    }

    /// Looks at the second-next token in the parse stream.
    ///
    /// This is commonly useful as a way to implement contextual keywords.
    ///
    /// # Example
    ///
    /// This example needs to use `peek2` because the symbol `union` is not a
    /// keyword in Rust. We can't use just `peek` and decide to parse a union if
    /// the very next token is `union`, because someone is free to write a `mod
    /// union` and a macro invocation that looks like `union::some_macro! { ...
    /// }`. In other words `union` is a contextual keyword.
    ///
    /// ```
    /// use syn::{Ident, ItemUnion, Macro, Result, Token};
    /// use syn::parse::{Parse, ParseStream};
    ///
    /// // Parses either a union or a macro invocation.
    /// enum UnionOrMacro {
    ///     // union MaybeUninit<T> { uninit: (), value: T }
    ///     Union(ItemUnion),
    ///     // lazy_static! { ... }
    ///     Macro(Macro),
    /// }
    ///
    /// impl Parse for UnionOrMacro {
    ///     fn parse(input: ParseStream) -> Result<Self> {
    ///         if input.peek(Token![union]) && input.peek2(Ident) {
    ///             input.parse().map(UnionOrMacro::Union)
    ///         } else {
    ///             input.parse().map(UnionOrMacro::Macro)
    ///         }
    ///     }
    /// }
    /// ```
    pub fn peek2<T: Peek>(&self, token: T) -> bool {
        fn peek2(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
            buffer.cursor().skip().map_or(false, peek)
        }

        let _ = token;
        peek2(self, T::Token::peek)
    }

    /// Looks at the third-next token in the parse stream.
    pub fn peek3<T: Peek>(&self, token: T) -> bool {
        fn peek3(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
            buffer
                .cursor()
                .skip()
                .and_then(Cursor::skip)
                .map_or(false, peek)
        }

        let _ = token;
        peek3(self, T::Token::peek)
    }

    /// Parses zero or more occurrences of `T` separated by punctuation of type
    /// `P`, with optional trailing punctuation.
    ///
    /// Parsing continues until the end of this parse stream. The entire content
    /// of this parse stream must consist of `T` and `P`.
    ///
    /// # Example
    ///
    /// ```
    /// # use quote::quote;
    /// #
    /// use syn::{parenthesized, token, Ident, Result, Token, Type};
    /// use syn::parse::{Parse, ParseStream};
    /// use syn::punctuated::Punctuated;
    ///
    /// // Parse a simplified tuple struct syntax like:
    /// //
    /// //     struct S(A, B);
    /// struct TupleStruct {
    ///     struct_token: Token![struct],
    ///     ident: Ident,
    ///     paren_token: token::Paren,
    ///     fields: Punctuated<Type, Token![,]>,
    ///     semi_token: Token![;],
    /// }
    ///
    /// impl Parse for TupleStruct {
    ///     fn parse(input: ParseStream) -> Result<Self> {
    ///         let content;
    ///         Ok(TupleStruct {
    ///             struct_token: input.parse()?,
    ///             ident: input.parse()?,
    ///             paren_token: parenthesized!(content in input),
    ///             fields: content.parse_terminated(Type::parse, Token![,])?,
    ///             semi_token: input.parse()?,
    ///         })
    ///     }
    /// }
    /// #
    /// # let input = quote! {
    /// #     struct S(A, B);
    /// # };
    /// # syn::parse2::<TupleStruct>(input).unwrap();
    /// ```
    ///
    /// # See also
    ///
    /// If your separator is anything more complicated than an invocation of the
    /// `Token!` macro, this method won't be applicable and you can instead
    /// directly use `Punctuated`'s parser functions: [`parse_terminated`],
    /// [`parse_separated_nonempty`] etc.
    ///
    /// [`parse_terminated`]: Punctuated::parse_terminated
    /// [`parse_separated_nonempty`]: Punctuated::parse_separated_nonempty
    ///
    /// ```
    /// use syn::{custom_keyword, Expr, Result, Token};
    /// use syn::parse::{Parse, ParseStream};
    /// use syn::punctuated::Punctuated;
    ///
    /// mod kw {
    ///     syn::custom_keyword!(fin);
    /// }
    ///
    /// struct Fin(kw::fin, Token![;]);
    ///
    /// impl Parse for Fin {
    ///     fn parse(input: ParseStream) -> Result<Self> {
    ///         Ok(Self(input.parse()?, input.parse()?))
    ///     }
    /// }
    ///
    /// struct Thing {
    ///     steps: Punctuated<Expr, Fin>,
    /// }
    ///
    /// impl Parse for Thing {
    ///     fn parse(input: ParseStream) -> Result<Self> {
    /// # if true {
    ///         Ok(Thing {
    ///             steps: Punctuated::parse_terminated(input)?,
    ///         })
    /// # } else {
    ///         // or equivalently, this means the same thing:
    /// #       Ok(Thing {
    ///             steps: input.call(Punctuated::parse_terminated)?,
    /// #       })
    /// # }
    ///     }
    /// }
    /// ```
    pub fn parse_terminated<T, P>(
        &self,
        parser: fn(ParseStream) -> Result<T>,
        separator: P,
    ) -> Result<Punctuated<T, P::Token>>
    where
        P: Peek,
        P::Token: Parse,
    {
        let _ = separator;
        Punctuated::parse_terminated_with(self, parser)
    }

    /// Returns whether there are tokens remaining in this stream.
    ///
    /// This method returns true at the end of the content of a set of
    /// delimiters, as well as at the very end of the complete macro input.
    ///
    /// # Example
    ///
    /// ```
    /// use syn::{braced, token, Ident, Item, Result, Token};
    /// use syn::parse::{Parse, ParseStream};
    ///
    /// // Parses a Rust `mod m { ... }` containing zero or more items.
    /// struct Mod {
    ///     mod_token: Token![mod],
    ///     name: Ident,
    ///     brace_token: token::Brace,
    ///     items: Vec<Item>,
    /// }
    ///
    /// impl Parse for Mod {
    ///     fn parse(input: ParseStream) -> Result<Self> {
    ///         let content;
    ///         Ok(Mod {
    ///             mod_token: input.parse()?,
    ///             name: input.parse()?,
    ///             brace_token: braced!(content in input),
    ///             items: {
    ///                 let mut items = Vec::new();
    ///                 while !content.is_empty() {
    ///                     items.push(content.parse()?);
    ///                 }
    ///                 items
    ///             },
    ///         })
    ///     }
    /// }
    /// ```
    pub fn is_empty(&self) -> bool {
        self.cursor().eof()
    }

    /// Constructs a helper for peeking at the next token in this stream and
    /// building an error message if it is not one of a set of expected tokens.
    ///
    /// # Example
    ///
    /// ```
    /// use syn::{ConstParam, Ident, Lifetime, LifetimeParam, Result, Token, TypeParam};
    /// use syn::parse::{Parse, ParseStream};
    ///
    /// // A generic parameter, a single one of the comma-separated elements inside
    /// // angle brackets in:
    /// //
    /// //     fn f<T: Clone, 'a, 'b: 'a, const N: usize>() { ... }
    /// //
    /// // On invalid input, lookahead gives us a reasonable error message.
    /// //
    /// //     error: expected one of: identifier, lifetime, `const`
    /// //       |
    /// //     5 |     fn f<!Sized>() {}
    /// //       |          ^
    /// enum GenericParam {
    ///     Type(TypeParam),
    ///     Lifetime(LifetimeParam),
    ///     Const(ConstParam),
    /// }
    ///
    /// impl Parse for GenericParam {
    ///     fn parse(input: ParseStream) -> Result<Self> {
    ///         let lookahead = input.lookahead1();
    ///         if lookahead.peek(Ident) {
    ///             input.parse().map(GenericParam::Type)
    ///         } else if lookahead.peek(Lifetime) {
    ///             input.parse().map(GenericParam::Lifetime)
    ///         } else if lookahead.peek(Token![const]) {
    ///             input.parse().map(GenericParam::Const)
    ///         } else {
    ///             Err(lookahead.error())
    ///         }
    ///     }
    /// }
    /// ```
    pub fn lookahead1(&self) -> Lookahead1<'a> {
        lookahead::new(self.scope, self.cursor())
    }

    /// Forks a parse stream so that parsing tokens out of either the original
    /// or the fork does not advance the position of the other.
    ///
    /// # Performance
    ///
    /// Forking a parse stream is a cheap fixed amount of work and does not
    /// involve copying token buffers. Where you might hit performance problems
    /// is if your macro ends up parsing a large amount of content more than
    /// once.
    ///
    /// ```
    /// # use syn::{Expr, Result};
    /// # use syn::parse::ParseStream;
    /// #
    /// # fn bad(input: ParseStream) -> Result<Expr> {
    /// // Do not do this.
    /// if input.fork().parse::<Expr>().is_ok() {
    ///     return input.parse::<Expr>();
    /// }
    /// # unimplemented!()
    /// # }
    /// ```
    ///
    /// As a rule, avoid parsing an unbounded amount of tokens out of a forked
    /// parse stream. Only use a fork when the amount of work performed against
    /// the fork is small and bounded.
    ///
    /// When complex speculative parsing against the forked stream is
    /// unavoidable, use [`parse::discouraged::Speculative`] to advance the
    /// original stream once the fork's parse is determined to have been
    /// successful.
    ///
    /// For a lower level way to perform speculative parsing at the token level,
    /// consider using [`ParseStream::step`] instead.
    ///
    /// [`parse::discouraged::Speculative`]: discouraged::Speculative
    /// [`ParseStream::step`]: ParseBuffer::step
    ///
    /// # Example
    ///
    /// The parse implementation shown here parses possibly restricted `pub`
    /// visibilities.
    ///
    /// - `pub`
    /// - `pub(crate)`
    /// - `pub(self)`
    /// - `pub(super)`
    /// - `pub(in some::path)`
    ///
    /// To handle the case of visibilities inside of tuple structs, the parser
    /// needs to distinguish parentheses that specify visibility restrictions
    /// from parentheses that form part of a tuple type.
    ///
    /// ```
    /// # struct A;
    /// # struct B;
    /// # struct C;
    /// #
    /// struct S(pub(crate) A, pub (B, C));
    /// ```
    ///
    /// In this example input the first tuple struct element of `S` has
    /// `pub(crate)` visibility while the second tuple struct element has `pub`
    /// visibility; the parentheses around `(B, C)` are part of the type rather
    /// than part of a visibility restriction.
    ///
    /// The parser uses a forked parse stream to check the first token inside of
    /// parentheses after the `pub` keyword. This is a small bounded amount of
    /// work performed against the forked parse stream.
    ///
    /// ```
    /// use syn::{parenthesized, token, Ident, Path, Result, Token};
    /// use syn::ext::IdentExt;
    /// use syn::parse::{Parse, ParseStream};
    ///
    /// struct PubVisibility {
    ///     pub_token: Token![pub],
    ///     restricted: Option<Restricted>,
    /// }
    ///
    /// struct Restricted {
    ///     paren_token: token::Paren,
    ///     in_token: Option<Token![in]>,
    ///     path: Path,
    /// }
    ///
    /// impl Parse for PubVisibility {
    ///     fn parse(input: ParseStream) -> Result<Self> {
    ///         let pub_token: Token![pub] = input.parse()?;
    ///
    ///         if input.peek(token::Paren) {
    ///             let ahead = input.fork();
    ///             let mut content;
    ///             parenthesized!(content in ahead);
    ///
    ///             if content.peek(Token![crate])
    ///                 || content.peek(Token![self])
    ///                 || content.peek(Token![super])
    ///             {
    ///                 return Ok(PubVisibility {
    ///                     pub_token,
    ///                     restricted: Some(Restricted {
    ///                         paren_token: parenthesized!(content in input),
    ///                         in_token: None,
    ///                         path: Path::from(content.call(Ident::parse_any)?),
    ///                     }),
    ///                 });
    ///             } else if content.peek(Token![in]) {
    ///                 return Ok(PubVisibility {
    ///                     pub_token,
    ///                     restricted: Some(Restricted {
    ///                         paren_token: parenthesized!(content in input),
    ///                         in_token: Some(content.parse()?),
    ///                         path: content.call(Path::parse_mod_style)?,
    ///                     }),
    ///                 });
    ///             }
    ///         }
    ///
    ///         Ok(PubVisibility {
    ///             pub_token,
    ///             restricted: None,
    ///         })
    ///     }
    /// }
    /// ```
    pub fn fork(&self) -> Self {
        ParseBuffer {
            scope: self.scope,
            cell: self.cell.clone(),
            marker: PhantomData,
            // Not the parent's unexpected. Nothing cares whether the clone
            // parses all the way unless we `advance_to`.
            unexpected: Cell::new(Some(Rc::new(Cell::new(Unexpected::None)))),
        }
    }

    /// Triggers an error at the current position of the parse stream.
    ///
    /// # Example
    ///
    /// ```
    /// use syn::{Expr, Result, Token};
    /// use syn::parse::{Parse, ParseStream};
    ///
    /// // Some kind of loop: `while` or `for` or `loop`.
    /// struct Loop {
    ///     expr: Expr,
    /// }
    ///
    /// impl Parse for Loop {
    ///     fn parse(input: ParseStream) -> Result<Self> {
    ///         if input.peek(Token![while])
    ///             || input.peek(Token![for])
    ///             || input.peek(Token![loop])
    ///         {
    ///             Ok(Loop {
    ///                 expr: input.parse()?,
    ///             })
    ///         } else {
    ///             Err(input.error("expected some kind of loop"))
    ///         }
    ///     }
    /// }
    /// ```
    pub fn error<T: Display>(&self, message: T) -> Error {
        error::new_at(self.scope, self.cursor(), message)
    }

    /// Speculatively parses tokens from this parse stream, advancing the
    /// position of this stream only if parsing succeeds.
    ///
    /// This is a powerful low-level API used for defining the `Parse` impls of
    /// the basic built-in token types. It is not something that will be used
    /// widely outside of the Syn codebase.
    ///
    /// # Example
    ///
    /// ```
    /// use proc_macro2::TokenTree;
    /// use syn::Result;
    /// use syn::parse::ParseStream;
    ///
    /// // This function advances the stream past the next occurrence of `@`. If
    /// // no `@` is present in the stream, the stream position is unchanged and
    /// // an error is returned.
    /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
    ///     input.step(|cursor| {
    ///         let mut rest = *cursor;
    ///         while let Some((tt, next)) = rest.token_tree() {
    ///             match &tt {
    ///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
    ///                     return Ok(((), next));
    ///                 }
    ///                 _ => rest = next,
    ///             }
    ///         }
    ///         Err(cursor.error("no `@` was found after this point"))
    ///     })
    /// }
    /// #
    /// # fn remainder_after_skipping_past_next_at(
    /// #     input: ParseStream,
    /// # ) -> Result<proc_macro2::TokenStream> {
    /// #     skip_past_next_at(input)?;
    /// #     input.parse()
    /// # }
    /// #
    /// # use syn::parse::Parser;
    /// # let remainder = remainder_after_skipping_past_next_at
    /// #     .parse_str("a @ b c")
    /// #     .unwrap();
    /// # assert_eq!(remainder.to_string(), "b c");
    /// ```
    pub fn step<F, R>(&self, function: F) -> Result<R>
    where
        F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,
    {
        // Since the user's function is required to work for any 'c, we know
        // that the Cursor<'c> they return is either derived from the input
        // StepCursor<'c, 'a> or from a Cursor<'static>.
        //
        // It would not be legal to write this function without the invariant
        // lifetime 'c in StepCursor<'c, 'a>. If this function were written only
        // in terms of 'a, the user could take our ParseBuffer<'a>, upcast it to
        // a ParseBuffer<'short> which some shorter lifetime than 'a, invoke
        // `step` on their ParseBuffer<'short> with a closure that returns
        // Cursor<'short>, and we would wrongly write that Cursor<'short> into
        // the Cell intended to hold Cursor<'a>.
        //
        // In some cases it may be necessary for R to contain a Cursor<'a>.
        // Within Syn we solve this using `advance_step_cursor` which uses the
        // existence of a StepCursor<'c, 'a> as proof that it is safe to cast
        // from Cursor<'c> to Cursor<'a>. If needed outside of Syn, it would be
        // safe to expose that API as a method on StepCursor.
        let (node, rest) = function(StepCursor {
            scope: self.scope,
            cursor: self.cell.get(),
            marker: PhantomData,
        })?;
        self.cell.set(rest);
        Ok(node)
    }

    /// Returns the `Span` of the next token in the parse stream, or
    /// `Span::call_site()` if this parse stream has completely exhausted its
    /// input `TokenStream`.
    pub fn span(&self) -> Span {
        let cursor = self.cursor();
        if cursor.eof() {
            self.scope
        } else {
            crate::buffer::open_span_of_group(cursor)
        }
    }

    /// Provides low-level access to the token representation underlying this
    /// parse stream.
    ///
    /// Cursors are immutable so no operations you perform against the cursor
    /// will affect the state of this parse stream.
    ///
    /// # Example
    ///
    /// ```
    /// use proc_macro2::TokenStream;
    /// use syn::buffer::Cursor;
    /// use syn::parse::{ParseStream, Result};
    ///
    /// // Run a parser that returns T, but get its output as TokenStream instead of T.
    /// // This works without T needing to implement ToTokens.
    /// fn recognize_token_stream<T>(
    ///     recognizer: fn(ParseStream) -> Result<T>,
    /// ) -> impl Fn(ParseStream) -> Result<TokenStream> {
    ///     move |input| {
    ///         let begin = input.cursor();
    ///         recognizer(input)?;
    ///         let end = input.cursor();
    ///         Ok(tokens_between(begin, end))
    ///     }
    /// }
    ///
    /// // Collect tokens between two cursors as a TokenStream.
    /// fn tokens_between(begin: Cursor, end: Cursor) -> TokenStream {
    ///     assert!(begin <= end);
    ///
    ///     let mut cursor = begin;
    ///     let mut tokens = TokenStream::new();
    ///     while cursor < end {
    ///         let (token, next) = cursor.token_tree().unwrap();
    ///         tokens.extend(std::iter::once(token));
    ///         cursor = next;
    ///     }
    ///     tokens
    /// }
    ///
    /// fn main() {
    ///     use quote::quote;
    ///     use syn::parse::{Parse, Parser};
    ///     use syn::Token;
    ///
    ///     // Parse syn::Type as a TokenStream, surrounded by angle brackets.
    ///     fn example(input: ParseStream) -> Result<TokenStream> {
    ///         let _langle: Token![<] = input.parse()?;
    ///         let ty = recognize_token_stream(syn::Type::parse)(input)?;
    ///         let _rangle: Token![>] = input.parse()?;
    ///         Ok(ty)
    ///     }
    ///
    ///     let tokens = quote! { <fn() -> u8> };
    ///     println!("{}", example.parse2(tokens).unwrap());
    /// }
    /// ```
    pub fn cursor(&self) -> Cursor<'a> {
        self.cell.get()
    }

    fn check_unexpected(&self) -> Result<()> {
        match inner_unexpected(self).1 {
            Some(span) => Err(Error::new(span, "unexpected token")),
            None => Ok(()),
        }
    }
}

#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl<T: Parse> Parse for Box<T> {
    fn parse(input: ParseStream) -> Result<Self> {
        input.parse().map(Box::new)
    }
}

#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl<T: Parse + Token> Parse for Option<T> {
    fn parse(input: ParseStream) -> Result<Self> {
        if T::peek(input.cursor()) {
            Ok(Some(input.parse()?))
        } else {
            Ok(None)
        }
    }
}

#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl Parse for TokenStream {
    fn parse(input: ParseStream) -> Result<Self> {
        input.step(|cursor| Ok((cursor.token_stream(), Cursor::empty())))
    }
}

#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl Parse for TokenTree {
    fn parse(input: ParseStream) -> Result<Self> {
        input.step(|cursor| match cursor.token_tree() {
            Some((tt, rest)) => Ok((tt, rest)),
            None => Err(cursor.error("expected token tree")),
        })
    }
}

#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl Parse for Group {
    fn parse(input: ParseStream) -> Result<Self> {
        input.step(|cursor| {
            if let Some((group, rest)) = cursor.any_group_token() {
                if group.delimiter() != Delimiter::None {
                    return Ok((group, rest));
                }
            }
            Err(cursor.error("expected group token"))
        })
    }
}

#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl Parse for Punct {
    fn parse(input: ParseStream) -> Result<Self> {
        input.step(|cursor| match cursor.punct() {
            Some((punct, rest)) => Ok((punct, rest)),
            None => Err(cursor.error("expected punctuation token")),
        })
    }
}

#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl Parse for Literal {
    fn parse(input: ParseStream) -> Result<Self> {
        input.step(|cursor| match cursor.literal() {
            Some((literal, rest)) => Ok((literal, rest)),
            None => Err(cursor.error("expected literal token")),
        })
    }
}

/// Parser that can parse Rust tokens into a particular syntax tree node.
///
/// Refer to the [module documentation] for details about parsing in Syn.
///
/// [module documentation]: self
pub trait Parser: Sized {
    type Output;

    /// Parse a proc-macro2 token stream into the chosen syntax tree node.
    ///
    /// This function will check that the input is fully parsed. If there are
    /// any unparsed tokens at the end of the stream, an error is returned.
    fn parse2(self, tokens: TokenStream) -> Result<Self::Output>;

    /// Parse tokens of source code into the chosen syntax tree node.
    ///
    /// This function will check that the input is fully parsed. If there are
    /// any unparsed tokens at the end of the stream, an error is returned.
    #[cfg(feature = "proc-macro")]
    #[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
    fn parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output> {
        self.parse2(proc_macro2::TokenStream::from(tokens))
    }

    /// Parse a string of Rust code into the chosen syntax tree node.
    ///
    /// This function will check that the input is fully parsed. If there are
    /// any unparsed tokens at the end of the string, an error is returned.
    ///
    /// # Hygiene
    ///
    /// Every span in the resulting syntax tree will be set to resolve at the
    /// macro call site.
    fn parse_str(self, s: &str) -> Result<Self::Output> {
        self.parse2(proc_macro2::TokenStream::from_str(s)?)
    }

    // Not public API.
    #[doc(hidden)]
    fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
        let _ = scope;
        self.parse2(tokens)
    }
}

fn tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer {
    let scope = Span::call_site();
    let cursor = tokens.begin();
    let unexpected = Rc::new(Cell::new(Unexpected::None));
    new_parse_buffer(scope, cursor, unexpected)
}

impl<F, T> Parser for F
where
    F: FnOnce(ParseStream) -> Result<T>,
{
    type Output = T;

    fn parse2(self, tokens: TokenStream) -> Result<T> {
        let buf = TokenBuffer::new2(tokens);
        let state = tokens_to_parse_buffer(&buf);
        let node = self(&state)?;
        state.check_unexpected()?;
        if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
            Err(Error::new(unexpected_span, "unexpected token"))
        } else {
            Ok(node)
        }
    }

    fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
        let buf = TokenBuffer::new2(tokens);
        let cursor = buf.begin();
        let unexpected = Rc::new(Cell::new(Unexpected::None));
        let state = new_parse_buffer(scope, cursor, unexpected);
        let node = self(&state)?;
        state.check_unexpected()?;
        if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
            Err(Error::new(unexpected_span, "unexpected token"))
        } else {
            Ok(node)
        }
    }
}

pub(crate) fn parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output> {
    f.__parse_scoped(scope, tokens)
}

/// An empty syntax tree node that consumes no tokens when parsed.
///
/// This is useful for attribute macros that want to ensure they are not
/// provided any attribute args.
///
/// ```
/// # extern crate proc_macro;
/// #
/// use proc_macro::TokenStream;
/// use syn::parse_macro_input;
/// use syn::parse::Nothing;
///
/// # const IGNORE: &str = stringify! {
/// #[proc_macro_attribute]
/// # };
/// pub fn my_attr(args: TokenStream, input: TokenStream) -> TokenStream {
///     parse_macro_input!(args as Nothing);
///
///     /* ... */
/// #   TokenStream::new()
/// }
/// ```
///
/// ```text
/// error: unexpected token
///  --> src/main.rs:3:19
///   |
/// 3 | #[my_attr(asdf)]
///   |           ^^^^
/// ```
pub struct Nothing;

impl Parse for Nothing {
    fn parse(_input: ParseStream) -> Result<Self> {
        Ok(Nothing)
    }
}

#[cfg(feature = "printing")]
#[cfg_attr(docsrs, doc(cfg(feature = "printing")))]
impl ToTokens for Nothing {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        let _ = tokens;
    }
}

#[cfg(feature = "clone-impls")]
#[cfg_attr(docsrs, doc(cfg(feature = "clone-impls")))]
impl Clone for Nothing {
    fn clone(&self) -> Self {
        *self
    }
}

#[cfg(feature = "clone-impls")]
#[cfg_attr(docsrs, doc(cfg(feature = "clone-impls")))]
impl Copy for Nothing {}

#[cfg(feature = "extra-traits")]
#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
impl Debug for Nothing {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str("Nothing")
    }
}

#[cfg(feature = "extra-traits")]
#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
impl Eq for Nothing {}

#[cfg(feature = "extra-traits")]
#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
impl PartialEq for Nothing {
    fn eq(&self, _other: &Self) -> bool {
        true
    }
}

#[cfg(feature = "extra-traits")]
#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
impl Hash for Nothing {
    fn hash<H: Hasher>(&self, _state: &mut H) {}
}