syn/parse.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
//! Parsing interface for parsing a token stream into a syntax tree node.
//!
//! Parsing in Syn is built on parser functions that take in a [`ParseStream`]
//! and produce a [`Result<T>`] where `T` is some syntax tree node. Underlying
//! these parser functions is a lower level mechanism built around the
//! [`Cursor`] type. `Cursor` is a cheaply copyable cursor over a range of
//! tokens in a token stream.
//!
//! [`Result<T>`]: Result
//! [`Cursor`]: crate::buffer::Cursor
//!
//! # Example
//!
//! Here is a snippet of parsing code to get a feel for the style of the
//! library. We define data structures for a subset of Rust syntax including
//! enums (not shown) and structs, then provide implementations of the [`Parse`]
//! trait to parse these syntax tree data structures from a token stream.
//!
//! Once `Parse` impls have been defined, they can be called conveniently from a
//! procedural macro through [`parse_macro_input!`] as shown at the bottom of
//! the snippet. If the caller provides syntactically invalid input to the
//! procedural macro, they will receive a helpful compiler error message
//! pointing out the exact token that triggered the failure to parse.
//!
//! [`parse_macro_input!`]: crate::parse_macro_input!
//!
//! ```
//! # extern crate proc_macro;
//! #
//! use proc_macro::TokenStream;
//! use syn::{braced, parse_macro_input, token, Field, Ident, Result, Token};
//! use syn::parse::{Parse, ParseStream};
//! use syn::punctuated::Punctuated;
//!
//! enum Item {
//! Struct(ItemStruct),
//! Enum(ItemEnum),
//! }
//!
//! struct ItemStruct {
//! struct_token: Token![struct],
//! ident: Ident,
//! brace_token: token::Brace,
//! fields: Punctuated<Field, Token![,]>,
//! }
//! #
//! # enum ItemEnum {}
//!
//! impl Parse for Item {
//! fn parse(input: ParseStream) -> Result<Self> {
//! let lookahead = input.lookahead1();
//! if lookahead.peek(Token![struct]) {
//! input.parse().map(Item::Struct)
//! } else if lookahead.peek(Token![enum]) {
//! input.parse().map(Item::Enum)
//! } else {
//! Err(lookahead.error())
//! }
//! }
//! }
//!
//! impl Parse for ItemStruct {
//! fn parse(input: ParseStream) -> Result<Self> {
//! let content;
//! Ok(ItemStruct {
//! struct_token: input.parse()?,
//! ident: input.parse()?,
//! brace_token: braced!(content in input),
//! fields: content.parse_terminated(Field::parse_named, Token![,])?,
//! })
//! }
//! }
//! #
//! # impl Parse for ItemEnum {
//! # fn parse(input: ParseStream) -> Result<Self> {
//! # unimplemented!()
//! # }
//! # }
//!
//! # const IGNORE: &str = stringify! {
//! #[proc_macro]
//! # };
//! pub fn my_macro(tokens: TokenStream) -> TokenStream {
//! let input = parse_macro_input!(tokens as Item);
//!
//! /* ... */
//! # TokenStream::new()
//! }
//! ```
//!
//! # The `syn::parse*` functions
//!
//! The [`syn::parse`], [`syn::parse2`], and [`syn::parse_str`] functions serve
//! as an entry point for parsing syntax tree nodes that can be parsed in an
//! obvious default way. These functions can return any syntax tree node that
//! implements the [`Parse`] trait, which includes most types in Syn.
//!
//! [`syn::parse`]: crate::parse()
//! [`syn::parse2`]: crate::parse2()
//! [`syn::parse_str`]: crate::parse_str()
//!
//! ```
//! use syn::Type;
//!
//! # fn run_parser() -> syn::Result<()> {
//! let t: Type = syn::parse_str("std::collections::HashMap<String, Value>")?;
//! # Ok(())
//! # }
//! #
//! # run_parser().unwrap();
//! ```
//!
//! The [`parse_quote!`] macro also uses this approach.
//!
//! [`parse_quote!`]: crate::parse_quote!
//!
//! # The `Parser` trait
//!
//! Some types can be parsed in several ways depending on context. For example
//! an [`Attribute`] can be either "outer" like `#[...]` or "inner" like
//! `#![...]` and parsing the wrong one would be a bug. Similarly [`Punctuated`]
//! may or may not allow trailing punctuation, and parsing it the wrong way
//! would either reject valid input or accept invalid input.
//!
//! [`Attribute`]: crate::Attribute
//! [`Punctuated`]: crate::punctuated
//!
//! The `Parse` trait is not implemented in these cases because there is no good
//! behavior to consider the default.
//!
//! ```compile_fail
//! # extern crate proc_macro;
//! #
//! # use syn::punctuated::Punctuated;
//! # use syn::{PathSegment, Result, Token};
//! #
//! # fn f(tokens: proc_macro::TokenStream) -> Result<()> {
//! #
//! // Can't parse `Punctuated` without knowing whether trailing punctuation
//! // should be allowed in this context.
//! let path: Punctuated<PathSegment, Token![::]> = syn::parse(tokens)?;
//! #
//! # Ok(())
//! # }
//! ```
//!
//! In these cases the types provide a choice of parser functions rather than a
//! single `Parse` implementation, and those parser functions can be invoked
//! through the [`Parser`] trait.
//!
//!
//! ```
//! # extern crate proc_macro;
//! #
//! use proc_macro::TokenStream;
//! use syn::parse::Parser;
//! use syn::punctuated::Punctuated;
//! use syn::{Attribute, Expr, PathSegment, Result, Token};
//!
//! fn call_some_parser_methods(input: TokenStream) -> Result<()> {
//! // Parse a nonempty sequence of path segments separated by `::` punctuation
//! // with no trailing punctuation.
//! let tokens = input.clone();
//! let parser = Punctuated::<PathSegment, Token![::]>::parse_separated_nonempty;
//! let _path = parser.parse(tokens)?;
//!
//! // Parse a possibly empty sequence of expressions terminated by commas with
//! // an optional trailing punctuation.
//! let tokens = input.clone();
//! let parser = Punctuated::<Expr, Token![,]>::parse_terminated;
//! let _args = parser.parse(tokens)?;
//!
//! // Parse zero or more outer attributes but not inner attributes.
//! let tokens = input.clone();
//! let parser = Attribute::parse_outer;
//! let _attrs = parser.parse(tokens)?;
//!
//! Ok(())
//! }
//! ```
#[path = "discouraged.rs"]
pub mod discouraged;
use crate::buffer::{Cursor, TokenBuffer};
use crate::error;
use crate::lookahead;
use crate::punctuated::Punctuated;
use crate::token::Token;
use proc_macro2::{Delimiter, Group, Literal, Punct, Span, TokenStream, TokenTree};
#[cfg(feature = "printing")]
use quote::ToTokens;
use std::cell::Cell;
use std::fmt::{self, Debug, Display};
#[cfg(feature = "extra-traits")]
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
use std::mem;
use std::ops::Deref;
use std::panic::{RefUnwindSafe, UnwindSafe};
use std::rc::Rc;
use std::str::FromStr;
pub use crate::error::{Error, Result};
pub use crate::lookahead::{Lookahead1, Peek};
/// Parsing interface implemented by all types that can be parsed in a default
/// way from a token stream.
///
/// Refer to the [module documentation] for details about implementing and using
/// the `Parse` trait.
///
/// [module documentation]: self
pub trait Parse: Sized {
fn parse(input: ParseStream) -> Result<Self>;
}
/// Input to a Syn parser function.
///
/// See the methods of this type under the documentation of [`ParseBuffer`]. For
/// an overview of parsing in Syn, refer to the [module documentation].
///
/// [module documentation]: self
pub type ParseStream<'a> = &'a ParseBuffer<'a>;
/// Cursor position within a buffered token stream.
///
/// This type is more commonly used through the type alias [`ParseStream`] which
/// is an alias for `&ParseBuffer`.
///
/// `ParseStream` is the input type for all parser functions in Syn. They have
/// the signature `fn(ParseStream) -> Result<T>`.
///
/// ## Calling a parser function
///
/// There is no public way to construct a `ParseBuffer`. Instead, if you are
/// looking to invoke a parser function that requires `ParseStream` as input,
/// you will need to go through one of the public parsing entry points.
///
/// - The [`parse_macro_input!`] macro if parsing input of a procedural macro;
/// - One of [the `syn::parse*` functions][syn-parse]; or
/// - A method of the [`Parser`] trait.
///
/// [`parse_macro_input!`]: crate::parse_macro_input!
/// [syn-parse]: self#the-synparse-functions
pub struct ParseBuffer<'a> {
scope: Span,
// Instead of Cell<Cursor<'a>> so that ParseBuffer<'a> is covariant in 'a.
// The rest of the code in this module needs to be careful that only a
// cursor derived from this `cell` is ever assigned to this `cell`.
//
// Cell<Cursor<'a>> cannot be covariant in 'a because then we could take a
// ParseBuffer<'a>, upcast to ParseBuffer<'short> for some lifetime shorter
// than 'a, and then assign a Cursor<'short> into the Cell.
//
// By extension, it would not be safe to expose an API that accepts a
// Cursor<'a> and trusts that it lives as long as the cursor currently in
// the cell.
cell: Cell<Cursor<'static>>,
marker: PhantomData<Cursor<'a>>,
unexpected: Cell<Option<Rc<Cell<Unexpected>>>>,
}
impl<'a> Drop for ParseBuffer<'a> {
fn drop(&mut self) {
if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(self.cursor()) {
let (inner, old_span) = inner_unexpected(self);
if old_span.is_none() {
inner.set(Unexpected::Some(unexpected_span));
}
}
}
}
impl<'a> Display for ParseBuffer<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Display::fmt(&self.cursor().token_stream(), f)
}
}
impl<'a> Debug for ParseBuffer<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Debug::fmt(&self.cursor().token_stream(), f)
}
}
impl<'a> UnwindSafe for ParseBuffer<'a> {}
impl<'a> RefUnwindSafe for ParseBuffer<'a> {}
/// Cursor state associated with speculative parsing.
///
/// This type is the input of the closure provided to [`ParseStream::step`].
///
/// [`ParseStream::step`]: ParseBuffer::step
///
/// # Example
///
/// ```
/// use proc_macro2::TokenTree;
/// use syn::Result;
/// use syn::parse::ParseStream;
///
/// // This function advances the stream past the next occurrence of `@`. If
/// // no `@` is present in the stream, the stream position is unchanged and
/// // an error is returned.
/// fn skip_past_next_at(input: ParseStream) -> Result<()> {
/// input.step(|cursor| {
/// let mut rest = *cursor;
/// while let Some((tt, next)) = rest.token_tree() {
/// match &tt {
/// TokenTree::Punct(punct) if punct.as_char() == '@' => {
/// return Ok(((), next));
/// }
/// _ => rest = next,
/// }
/// }
/// Err(cursor.error("no `@` was found after this point"))
/// })
/// }
/// #
/// # fn remainder_after_skipping_past_next_at(
/// # input: ParseStream,
/// # ) -> Result<proc_macro2::TokenStream> {
/// # skip_past_next_at(input)?;
/// # input.parse()
/// # }
/// #
/// # use syn::parse::Parser;
/// # let remainder = remainder_after_skipping_past_next_at
/// # .parse_str("a @ b c")
/// # .unwrap();
/// # assert_eq!(remainder.to_string(), "b c");
/// ```
pub struct StepCursor<'c, 'a> {
scope: Span,
// This field is covariant in 'c.
cursor: Cursor<'c>,
// This field is contravariant in 'c. Together these make StepCursor
// invariant in 'c. Also covariant in 'a. The user cannot cast 'c to a
// different lifetime but can upcast into a StepCursor with a shorter
// lifetime 'a.
//
// As long as we only ever construct a StepCursor for which 'c outlives 'a,
// this means if ever a StepCursor<'c, 'a> exists we are guaranteed that 'c
// outlives 'a.
marker: PhantomData<fn(Cursor<'c>) -> Cursor<'a>>,
}
impl<'c, 'a> Deref for StepCursor<'c, 'a> {
type Target = Cursor<'c>;
fn deref(&self) -> &Self::Target {
&self.cursor
}
}
impl<'c, 'a> Copy for StepCursor<'c, 'a> {}
impl<'c, 'a> Clone for StepCursor<'c, 'a> {
fn clone(&self) -> Self {
*self
}
}
impl<'c, 'a> StepCursor<'c, 'a> {
/// Triggers an error at the current position of the parse stream.
///
/// The `ParseStream::step` invocation will return this same error without
/// advancing the stream state.
pub fn error<T: Display>(self, message: T) -> Error {
error::new_at(self.scope, self.cursor, message)
}
}
pub(crate) fn advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a> {
// Refer to the comments within the StepCursor definition. We use the
// fact that a StepCursor<'c, 'a> exists as proof that 'c outlives 'a.
// Cursor is covariant in its lifetime parameter so we can cast a
// Cursor<'c> to one with the shorter lifetime Cursor<'a>.
let _ = proof;
unsafe { mem::transmute::<Cursor<'c>, Cursor<'a>>(to) }
}
pub(crate) fn new_parse_buffer(
scope: Span,
cursor: Cursor,
unexpected: Rc<Cell<Unexpected>>,
) -> ParseBuffer {
ParseBuffer {
scope,
// See comment on `cell` in the struct definition.
cell: Cell::new(unsafe { mem::transmute::<Cursor, Cursor<'static>>(cursor) }),
marker: PhantomData,
unexpected: Cell::new(Some(unexpected)),
}
}
pub(crate) enum Unexpected {
None,
Some(Span),
Chain(Rc<Cell<Unexpected>>),
}
impl Default for Unexpected {
fn default() -> Self {
Unexpected::None
}
}
impl Clone for Unexpected {
fn clone(&self) -> Self {
match self {
Unexpected::None => Unexpected::None,
Unexpected::Some(span) => Unexpected::Some(*span),
Unexpected::Chain(next) => Unexpected::Chain(next.clone()),
}
}
}
// We call this on Cell<Unexpected> and Cell<Option<T>> where temporarily
// swapping in a None is cheap.
fn cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T {
let prev = cell.take();
let ret = prev.clone();
cell.set(prev);
ret
}
fn inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<Span>) {
let mut unexpected = get_unexpected(buffer);
loop {
match cell_clone(&unexpected) {
Unexpected::None => return (unexpected, None),
Unexpected::Some(span) => return (unexpected, Some(span)),
Unexpected::Chain(next) => unexpected = next,
}
}
}
pub(crate) fn get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>> {
cell_clone(&buffer.unexpected).unwrap()
}
fn span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<Span> {
if cursor.eof() {
return None;
}
while let Some((inner, _span, rest)) = cursor.group(Delimiter::None) {
if let Some(unexpected) = span_of_unexpected_ignoring_nones(inner) {
return Some(unexpected);
}
cursor = rest;
}
if cursor.eof() {
None
} else {
Some(cursor.span())
}
}
impl<'a> ParseBuffer<'a> {
/// Parses a syntax tree node of type `T`, advancing the position of our
/// parse stream past it.
pub fn parse<T: Parse>(&self) -> Result<T> {
T::parse(self)
}
/// Calls the given parser function to parse a syntax tree node of type `T`
/// from this stream.
///
/// # Example
///
/// The parser below invokes [`Attribute::parse_outer`] to parse a vector of
/// zero or more outer attributes.
///
/// [`Attribute::parse_outer`]: crate::Attribute::parse_outer
///
/// ```
/// use syn::{Attribute, Ident, Result, Token};
/// use syn::parse::{Parse, ParseStream};
///
/// // Parses a unit struct with attributes.
/// //
/// // #[path = "s.tmpl"]
/// // struct S;
/// struct UnitStruct {
/// attrs: Vec<Attribute>,
/// struct_token: Token![struct],
/// name: Ident,
/// semi_token: Token![;],
/// }
///
/// impl Parse for UnitStruct {
/// fn parse(input: ParseStream) -> Result<Self> {
/// Ok(UnitStruct {
/// attrs: input.call(Attribute::parse_outer)?,
/// struct_token: input.parse()?,
/// name: input.parse()?,
/// semi_token: input.parse()?,
/// })
/// }
/// }
/// ```
pub fn call<T>(&self, function: fn(ParseStream) -> Result<T>) -> Result<T> {
function(self)
}
/// Looks at the next token in the parse stream to determine whether it
/// matches the requested type of token.
///
/// Does not advance the position of the parse stream.
///
/// # Syntax
///
/// Note that this method does not use turbofish syntax. Pass the peek type
/// inside of parentheses.
///
/// - `input.peek(Token![struct])`
/// - `input.peek(Token![==])`
/// - `input.peek(syn::Ident)` *(does not accept keywords)*
/// - `input.peek(syn::Ident::peek_any)`
/// - `input.peek(Lifetime)`
/// - `input.peek(token::Brace)`
///
/// # Example
///
/// In this example we finish parsing the list of supertraits when the next
/// token in the input is either `where` or an opening curly brace.
///
/// ```
/// use syn::{braced, token, Generics, Ident, Result, Token, TypeParamBound};
/// use syn::parse::{Parse, ParseStream};
/// use syn::punctuated::Punctuated;
///
/// // Parses a trait definition containing no associated items.
/// //
/// // trait Marker<'de, T>: A + B<'de> where Box<T>: Clone {}
/// struct MarkerTrait {
/// trait_token: Token![trait],
/// ident: Ident,
/// generics: Generics,
/// colon_token: Option<Token![:]>,
/// supertraits: Punctuated<TypeParamBound, Token![+]>,
/// brace_token: token::Brace,
/// }
///
/// impl Parse for MarkerTrait {
/// fn parse(input: ParseStream) -> Result<Self> {
/// let trait_token: Token![trait] = input.parse()?;
/// let ident: Ident = input.parse()?;
/// let mut generics: Generics = input.parse()?;
/// let colon_token: Option<Token![:]> = input.parse()?;
///
/// let mut supertraits = Punctuated::new();
/// if colon_token.is_some() {
/// loop {
/// supertraits.push_value(input.parse()?);
/// if input.peek(Token![where]) || input.peek(token::Brace) {
/// break;
/// }
/// supertraits.push_punct(input.parse()?);
/// }
/// }
///
/// generics.where_clause = input.parse()?;
/// let content;
/// let empty_brace_token = braced!(content in input);
///
/// Ok(MarkerTrait {
/// trait_token,
/// ident,
/// generics,
/// colon_token,
/// supertraits,
/// brace_token: empty_brace_token,
/// })
/// }
/// }
/// ```
pub fn peek<T: Peek>(&self, token: T) -> bool {
let _ = token;
T::Token::peek(self.cursor())
}
/// Looks at the second-next token in the parse stream.
///
/// This is commonly useful as a way to implement contextual keywords.
///
/// # Example
///
/// This example needs to use `peek2` because the symbol `union` is not a
/// keyword in Rust. We can't use just `peek` and decide to parse a union if
/// the very next token is `union`, because someone is free to write a `mod
/// union` and a macro invocation that looks like `union::some_macro! { ...
/// }`. In other words `union` is a contextual keyword.
///
/// ```
/// use syn::{Ident, ItemUnion, Macro, Result, Token};
/// use syn::parse::{Parse, ParseStream};
///
/// // Parses either a union or a macro invocation.
/// enum UnionOrMacro {
/// // union MaybeUninit<T> { uninit: (), value: T }
/// Union(ItemUnion),
/// // lazy_static! { ... }
/// Macro(Macro),
/// }
///
/// impl Parse for UnionOrMacro {
/// fn parse(input: ParseStream) -> Result<Self> {
/// if input.peek(Token![union]) && input.peek2(Ident) {
/// input.parse().map(UnionOrMacro::Union)
/// } else {
/// input.parse().map(UnionOrMacro::Macro)
/// }
/// }
/// }
/// ```
pub fn peek2<T: Peek>(&self, token: T) -> bool {
fn peek2(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
buffer.cursor().skip().map_or(false, peek)
}
let _ = token;
peek2(self, T::Token::peek)
}
/// Looks at the third-next token in the parse stream.
pub fn peek3<T: Peek>(&self, token: T) -> bool {
fn peek3(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
buffer
.cursor()
.skip()
.and_then(Cursor::skip)
.map_or(false, peek)
}
let _ = token;
peek3(self, T::Token::peek)
}
/// Parses zero or more occurrences of `T` separated by punctuation of type
/// `P`, with optional trailing punctuation.
///
/// Parsing continues until the end of this parse stream. The entire content
/// of this parse stream must consist of `T` and `P`.
///
/// # Example
///
/// ```
/// # use quote::quote;
/// #
/// use syn::{parenthesized, token, Ident, Result, Token, Type};
/// use syn::parse::{Parse, ParseStream};
/// use syn::punctuated::Punctuated;
///
/// // Parse a simplified tuple struct syntax like:
/// //
/// // struct S(A, B);
/// struct TupleStruct {
/// struct_token: Token![struct],
/// ident: Ident,
/// paren_token: token::Paren,
/// fields: Punctuated<Type, Token![,]>,
/// semi_token: Token![;],
/// }
///
/// impl Parse for TupleStruct {
/// fn parse(input: ParseStream) -> Result<Self> {
/// let content;
/// Ok(TupleStruct {
/// struct_token: input.parse()?,
/// ident: input.parse()?,
/// paren_token: parenthesized!(content in input),
/// fields: content.parse_terminated(Type::parse, Token![,])?,
/// semi_token: input.parse()?,
/// })
/// }
/// }
/// #
/// # let input = quote! {
/// # struct S(A, B);
/// # };
/// # syn::parse2::<TupleStruct>(input).unwrap();
/// ```
///
/// # See also
///
/// If your separator is anything more complicated than an invocation of the
/// `Token!` macro, this method won't be applicable and you can instead
/// directly use `Punctuated`'s parser functions: [`parse_terminated`],
/// [`parse_separated_nonempty`] etc.
///
/// [`parse_terminated`]: Punctuated::parse_terminated
/// [`parse_separated_nonempty`]: Punctuated::parse_separated_nonempty
///
/// ```
/// use syn::{custom_keyword, Expr, Result, Token};
/// use syn::parse::{Parse, ParseStream};
/// use syn::punctuated::Punctuated;
///
/// mod kw {
/// syn::custom_keyword!(fin);
/// }
///
/// struct Fin(kw::fin, Token![;]);
///
/// impl Parse for Fin {
/// fn parse(input: ParseStream) -> Result<Self> {
/// Ok(Self(input.parse()?, input.parse()?))
/// }
/// }
///
/// struct Thing {
/// steps: Punctuated<Expr, Fin>,
/// }
///
/// impl Parse for Thing {
/// fn parse(input: ParseStream) -> Result<Self> {
/// # if true {
/// Ok(Thing {
/// steps: Punctuated::parse_terminated(input)?,
/// })
/// # } else {
/// // or equivalently, this means the same thing:
/// # Ok(Thing {
/// steps: input.call(Punctuated::parse_terminated)?,
/// # })
/// # }
/// }
/// }
/// ```
pub fn parse_terminated<T, P>(
&self,
parser: fn(ParseStream) -> Result<T>,
separator: P,
) -> Result<Punctuated<T, P::Token>>
where
P: Peek,
P::Token: Parse,
{
let _ = separator;
Punctuated::parse_terminated_with(self, parser)
}
/// Returns whether there are tokens remaining in this stream.
///
/// This method returns true at the end of the content of a set of
/// delimiters, as well as at the very end of the complete macro input.
///
/// # Example
///
/// ```
/// use syn::{braced, token, Ident, Item, Result, Token};
/// use syn::parse::{Parse, ParseStream};
///
/// // Parses a Rust `mod m { ... }` containing zero or more items.
/// struct Mod {
/// mod_token: Token![mod],
/// name: Ident,
/// brace_token: token::Brace,
/// items: Vec<Item>,
/// }
///
/// impl Parse for Mod {
/// fn parse(input: ParseStream) -> Result<Self> {
/// let content;
/// Ok(Mod {
/// mod_token: input.parse()?,
/// name: input.parse()?,
/// brace_token: braced!(content in input),
/// items: {
/// let mut items = Vec::new();
/// while !content.is_empty() {
/// items.push(content.parse()?);
/// }
/// items
/// },
/// })
/// }
/// }
/// ```
pub fn is_empty(&self) -> bool {
self.cursor().eof()
}
/// Constructs a helper for peeking at the next token in this stream and
/// building an error message if it is not one of a set of expected tokens.
///
/// # Example
///
/// ```
/// use syn::{ConstParam, Ident, Lifetime, LifetimeParam, Result, Token, TypeParam};
/// use syn::parse::{Parse, ParseStream};
///
/// // A generic parameter, a single one of the comma-separated elements inside
/// // angle brackets in:
/// //
/// // fn f<T: Clone, 'a, 'b: 'a, const N: usize>() { ... }
/// //
/// // On invalid input, lookahead gives us a reasonable error message.
/// //
/// // error: expected one of: identifier, lifetime, `const`
/// // |
/// // 5 | fn f<!Sized>() {}
/// // | ^
/// enum GenericParam {
/// Type(TypeParam),
/// Lifetime(LifetimeParam),
/// Const(ConstParam),
/// }
///
/// impl Parse for GenericParam {
/// fn parse(input: ParseStream) -> Result<Self> {
/// let lookahead = input.lookahead1();
/// if lookahead.peek(Ident) {
/// input.parse().map(GenericParam::Type)
/// } else if lookahead.peek(Lifetime) {
/// input.parse().map(GenericParam::Lifetime)
/// } else if lookahead.peek(Token![const]) {
/// input.parse().map(GenericParam::Const)
/// } else {
/// Err(lookahead.error())
/// }
/// }
/// }
/// ```
pub fn lookahead1(&self) -> Lookahead1<'a> {
lookahead::new(self.scope, self.cursor())
}
/// Forks a parse stream so that parsing tokens out of either the original
/// or the fork does not advance the position of the other.
///
/// # Performance
///
/// Forking a parse stream is a cheap fixed amount of work and does not
/// involve copying token buffers. Where you might hit performance problems
/// is if your macro ends up parsing a large amount of content more than
/// once.
///
/// ```
/// # use syn::{Expr, Result};
/// # use syn::parse::ParseStream;
/// #
/// # fn bad(input: ParseStream) -> Result<Expr> {
/// // Do not do this.
/// if input.fork().parse::<Expr>().is_ok() {
/// return input.parse::<Expr>();
/// }
/// # unimplemented!()
/// # }
/// ```
///
/// As a rule, avoid parsing an unbounded amount of tokens out of a forked
/// parse stream. Only use a fork when the amount of work performed against
/// the fork is small and bounded.
///
/// When complex speculative parsing against the forked stream is
/// unavoidable, use [`parse::discouraged::Speculative`] to advance the
/// original stream once the fork's parse is determined to have been
/// successful.
///
/// For a lower level way to perform speculative parsing at the token level,
/// consider using [`ParseStream::step`] instead.
///
/// [`parse::discouraged::Speculative`]: discouraged::Speculative
/// [`ParseStream::step`]: ParseBuffer::step
///
/// # Example
///
/// The parse implementation shown here parses possibly restricted `pub`
/// visibilities.
///
/// - `pub`
/// - `pub(crate)`
/// - `pub(self)`
/// - `pub(super)`
/// - `pub(in some::path)`
///
/// To handle the case of visibilities inside of tuple structs, the parser
/// needs to distinguish parentheses that specify visibility restrictions
/// from parentheses that form part of a tuple type.
///
/// ```
/// # struct A;
/// # struct B;
/// # struct C;
/// #
/// struct S(pub(crate) A, pub (B, C));
/// ```
///
/// In this example input the first tuple struct element of `S` has
/// `pub(crate)` visibility while the second tuple struct element has `pub`
/// visibility; the parentheses around `(B, C)` are part of the type rather
/// than part of a visibility restriction.
///
/// The parser uses a forked parse stream to check the first token inside of
/// parentheses after the `pub` keyword. This is a small bounded amount of
/// work performed against the forked parse stream.
///
/// ```
/// use syn::{parenthesized, token, Ident, Path, Result, Token};
/// use syn::ext::IdentExt;
/// use syn::parse::{Parse, ParseStream};
///
/// struct PubVisibility {
/// pub_token: Token![pub],
/// restricted: Option<Restricted>,
/// }
///
/// struct Restricted {
/// paren_token: token::Paren,
/// in_token: Option<Token![in]>,
/// path: Path,
/// }
///
/// impl Parse for PubVisibility {
/// fn parse(input: ParseStream) -> Result<Self> {
/// let pub_token: Token![pub] = input.parse()?;
///
/// if input.peek(token::Paren) {
/// let ahead = input.fork();
/// let mut content;
/// parenthesized!(content in ahead);
///
/// if content.peek(Token![crate])
/// || content.peek(Token![self])
/// || content.peek(Token![super])
/// {
/// return Ok(PubVisibility {
/// pub_token,
/// restricted: Some(Restricted {
/// paren_token: parenthesized!(content in input),
/// in_token: None,
/// path: Path::from(content.call(Ident::parse_any)?),
/// }),
/// });
/// } else if content.peek(Token![in]) {
/// return Ok(PubVisibility {
/// pub_token,
/// restricted: Some(Restricted {
/// paren_token: parenthesized!(content in input),
/// in_token: Some(content.parse()?),
/// path: content.call(Path::parse_mod_style)?,
/// }),
/// });
/// }
/// }
///
/// Ok(PubVisibility {
/// pub_token,
/// restricted: None,
/// })
/// }
/// }
/// ```
pub fn fork(&self) -> Self {
ParseBuffer {
scope: self.scope,
cell: self.cell.clone(),
marker: PhantomData,
// Not the parent's unexpected. Nothing cares whether the clone
// parses all the way unless we `advance_to`.
unexpected: Cell::new(Some(Rc::new(Cell::new(Unexpected::None)))),
}
}
/// Triggers an error at the current position of the parse stream.
///
/// # Example
///
/// ```
/// use syn::{Expr, Result, Token};
/// use syn::parse::{Parse, ParseStream};
///
/// // Some kind of loop: `while` or `for` or `loop`.
/// struct Loop {
/// expr: Expr,
/// }
///
/// impl Parse for Loop {
/// fn parse(input: ParseStream) -> Result<Self> {
/// if input.peek(Token![while])
/// || input.peek(Token![for])
/// || input.peek(Token![loop])
/// {
/// Ok(Loop {
/// expr: input.parse()?,
/// })
/// } else {
/// Err(input.error("expected some kind of loop"))
/// }
/// }
/// }
/// ```
pub fn error<T: Display>(&self, message: T) -> Error {
error::new_at(self.scope, self.cursor(), message)
}
/// Speculatively parses tokens from this parse stream, advancing the
/// position of this stream only if parsing succeeds.
///
/// This is a powerful low-level API used for defining the `Parse` impls of
/// the basic built-in token types. It is not something that will be used
/// widely outside of the Syn codebase.
///
/// # Example
///
/// ```
/// use proc_macro2::TokenTree;
/// use syn::Result;
/// use syn::parse::ParseStream;
///
/// // This function advances the stream past the next occurrence of `@`. If
/// // no `@` is present in the stream, the stream position is unchanged and
/// // an error is returned.
/// fn skip_past_next_at(input: ParseStream) -> Result<()> {
/// input.step(|cursor| {
/// let mut rest = *cursor;
/// while let Some((tt, next)) = rest.token_tree() {
/// match &tt {
/// TokenTree::Punct(punct) if punct.as_char() == '@' => {
/// return Ok(((), next));
/// }
/// _ => rest = next,
/// }
/// }
/// Err(cursor.error("no `@` was found after this point"))
/// })
/// }
/// #
/// # fn remainder_after_skipping_past_next_at(
/// # input: ParseStream,
/// # ) -> Result<proc_macro2::TokenStream> {
/// # skip_past_next_at(input)?;
/// # input.parse()
/// # }
/// #
/// # use syn::parse::Parser;
/// # let remainder = remainder_after_skipping_past_next_at
/// # .parse_str("a @ b c")
/// # .unwrap();
/// # assert_eq!(remainder.to_string(), "b c");
/// ```
pub fn step<F, R>(&self, function: F) -> Result<R>
where
F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,
{
// Since the user's function is required to work for any 'c, we know
// that the Cursor<'c> they return is either derived from the input
// StepCursor<'c, 'a> or from a Cursor<'static>.
//
// It would not be legal to write this function without the invariant
// lifetime 'c in StepCursor<'c, 'a>. If this function were written only
// in terms of 'a, the user could take our ParseBuffer<'a>, upcast it to
// a ParseBuffer<'short> which some shorter lifetime than 'a, invoke
// `step` on their ParseBuffer<'short> with a closure that returns
// Cursor<'short>, and we would wrongly write that Cursor<'short> into
// the Cell intended to hold Cursor<'a>.
//
// In some cases it may be necessary for R to contain a Cursor<'a>.
// Within Syn we solve this using `advance_step_cursor` which uses the
// existence of a StepCursor<'c, 'a> as proof that it is safe to cast
// from Cursor<'c> to Cursor<'a>. If needed outside of Syn, it would be
// safe to expose that API as a method on StepCursor.
let (node, rest) = function(StepCursor {
scope: self.scope,
cursor: self.cell.get(),
marker: PhantomData,
})?;
self.cell.set(rest);
Ok(node)
}
/// Returns the `Span` of the next token in the parse stream, or
/// `Span::call_site()` if this parse stream has completely exhausted its
/// input `TokenStream`.
pub fn span(&self) -> Span {
let cursor = self.cursor();
if cursor.eof() {
self.scope
} else {
crate::buffer::open_span_of_group(cursor)
}
}
/// Provides low-level access to the token representation underlying this
/// parse stream.
///
/// Cursors are immutable so no operations you perform against the cursor
/// will affect the state of this parse stream.
///
/// # Example
///
/// ```
/// use proc_macro2::TokenStream;
/// use syn::buffer::Cursor;
/// use syn::parse::{ParseStream, Result};
///
/// // Run a parser that returns T, but get its output as TokenStream instead of T.
/// // This works without T needing to implement ToTokens.
/// fn recognize_token_stream<T>(
/// recognizer: fn(ParseStream) -> Result<T>,
/// ) -> impl Fn(ParseStream) -> Result<TokenStream> {
/// move |input| {
/// let begin = input.cursor();
/// recognizer(input)?;
/// let end = input.cursor();
/// Ok(tokens_between(begin, end))
/// }
/// }
///
/// // Collect tokens between two cursors as a TokenStream.
/// fn tokens_between(begin: Cursor, end: Cursor) -> TokenStream {
/// assert!(begin <= end);
///
/// let mut cursor = begin;
/// let mut tokens = TokenStream::new();
/// while cursor < end {
/// let (token, next) = cursor.token_tree().unwrap();
/// tokens.extend(std::iter::once(token));
/// cursor = next;
/// }
/// tokens
/// }
///
/// fn main() {
/// use quote::quote;
/// use syn::parse::{Parse, Parser};
/// use syn::Token;
///
/// // Parse syn::Type as a TokenStream, surrounded by angle brackets.
/// fn example(input: ParseStream) -> Result<TokenStream> {
/// let _langle: Token![<] = input.parse()?;
/// let ty = recognize_token_stream(syn::Type::parse)(input)?;
/// let _rangle: Token![>] = input.parse()?;
/// Ok(ty)
/// }
///
/// let tokens = quote! { <fn() -> u8> };
/// println!("{}", example.parse2(tokens).unwrap());
/// }
/// ```
pub fn cursor(&self) -> Cursor<'a> {
self.cell.get()
}
fn check_unexpected(&self) -> Result<()> {
match inner_unexpected(self).1 {
Some(span) => Err(Error::new(span, "unexpected token")),
None => Ok(()),
}
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl<T: Parse> Parse for Box<T> {
fn parse(input: ParseStream) -> Result<Self> {
input.parse().map(Box::new)
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl<T: Parse + Token> Parse for Option<T> {
fn parse(input: ParseStream) -> Result<Self> {
if T::peek(input.cursor()) {
Ok(Some(input.parse()?))
} else {
Ok(None)
}
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl Parse for TokenStream {
fn parse(input: ParseStream) -> Result<Self> {
input.step(|cursor| Ok((cursor.token_stream(), Cursor::empty())))
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl Parse for TokenTree {
fn parse(input: ParseStream) -> Result<Self> {
input.step(|cursor| match cursor.token_tree() {
Some((tt, rest)) => Ok((tt, rest)),
None => Err(cursor.error("expected token tree")),
})
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl Parse for Group {
fn parse(input: ParseStream) -> Result<Self> {
input.step(|cursor| {
if let Some((group, rest)) = cursor.any_group_token() {
if group.delimiter() != Delimiter::None {
return Ok((group, rest));
}
}
Err(cursor.error("expected group token"))
})
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl Parse for Punct {
fn parse(input: ParseStream) -> Result<Self> {
input.step(|cursor| match cursor.punct() {
Some((punct, rest)) => Ok((punct, rest)),
None => Err(cursor.error("expected punctuation token")),
})
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl Parse for Literal {
fn parse(input: ParseStream) -> Result<Self> {
input.step(|cursor| match cursor.literal() {
Some((literal, rest)) => Ok((literal, rest)),
None => Err(cursor.error("expected literal token")),
})
}
}
/// Parser that can parse Rust tokens into a particular syntax tree node.
///
/// Refer to the [module documentation] for details about parsing in Syn.
///
/// [module documentation]: self
pub trait Parser: Sized {
type Output;
/// Parse a proc-macro2 token stream into the chosen syntax tree node.
///
/// This function will check that the input is fully parsed. If there are
/// any unparsed tokens at the end of the stream, an error is returned.
fn parse2(self, tokens: TokenStream) -> Result<Self::Output>;
/// Parse tokens of source code into the chosen syntax tree node.
///
/// This function will check that the input is fully parsed. If there are
/// any unparsed tokens at the end of the stream, an error is returned.
#[cfg(feature = "proc-macro")]
#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
fn parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output> {
self.parse2(proc_macro2::TokenStream::from(tokens))
}
/// Parse a string of Rust code into the chosen syntax tree node.
///
/// This function will check that the input is fully parsed. If there are
/// any unparsed tokens at the end of the string, an error is returned.
///
/// # Hygiene
///
/// Every span in the resulting syntax tree will be set to resolve at the
/// macro call site.
fn parse_str(self, s: &str) -> Result<Self::Output> {
self.parse2(proc_macro2::TokenStream::from_str(s)?)
}
// Not public API.
#[doc(hidden)]
fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
let _ = scope;
self.parse2(tokens)
}
}
fn tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer {
let scope = Span::call_site();
let cursor = tokens.begin();
let unexpected = Rc::new(Cell::new(Unexpected::None));
new_parse_buffer(scope, cursor, unexpected)
}
impl<F, T> Parser for F
where
F: FnOnce(ParseStream) -> Result<T>,
{
type Output = T;
fn parse2(self, tokens: TokenStream) -> Result<T> {
let buf = TokenBuffer::new2(tokens);
let state = tokens_to_parse_buffer(&buf);
let node = self(&state)?;
state.check_unexpected()?;
if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
Err(Error::new(unexpected_span, "unexpected token"))
} else {
Ok(node)
}
}
fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
let buf = TokenBuffer::new2(tokens);
let cursor = buf.begin();
let unexpected = Rc::new(Cell::new(Unexpected::None));
let state = new_parse_buffer(scope, cursor, unexpected);
let node = self(&state)?;
state.check_unexpected()?;
if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
Err(Error::new(unexpected_span, "unexpected token"))
} else {
Ok(node)
}
}
}
pub(crate) fn parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output> {
f.__parse_scoped(scope, tokens)
}
/// An empty syntax tree node that consumes no tokens when parsed.
///
/// This is useful for attribute macros that want to ensure they are not
/// provided any attribute args.
///
/// ```
/// # extern crate proc_macro;
/// #
/// use proc_macro::TokenStream;
/// use syn::parse_macro_input;
/// use syn::parse::Nothing;
///
/// # const IGNORE: &str = stringify! {
/// #[proc_macro_attribute]
/// # };
/// pub fn my_attr(args: TokenStream, input: TokenStream) -> TokenStream {
/// parse_macro_input!(args as Nothing);
///
/// /* ... */
/// # TokenStream::new()
/// }
/// ```
///
/// ```text
/// error: unexpected token
/// --> src/main.rs:3:19
/// |
/// 3 | #[my_attr(asdf)]
/// | ^^^^
/// ```
pub struct Nothing;
impl Parse for Nothing {
fn parse(_input: ParseStream) -> Result<Self> {
Ok(Nothing)
}
}
#[cfg(feature = "printing")]
#[cfg_attr(docsrs, doc(cfg(feature = "printing")))]
impl ToTokens for Nothing {
fn to_tokens(&self, tokens: &mut TokenStream) {
let _ = tokens;
}
}
#[cfg(feature = "clone-impls")]
#[cfg_attr(docsrs, doc(cfg(feature = "clone-impls")))]
impl Clone for Nothing {
fn clone(&self) -> Self {
*self
}
}
#[cfg(feature = "clone-impls")]
#[cfg_attr(docsrs, doc(cfg(feature = "clone-impls")))]
impl Copy for Nothing {}
#[cfg(feature = "extra-traits")]
#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
impl Debug for Nothing {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str("Nothing")
}
}
#[cfg(feature = "extra-traits")]
#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
impl Eq for Nothing {}
#[cfg(feature = "extra-traits")]
#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
impl PartialEq for Nothing {
fn eq(&self, _other: &Self) -> bool {
true
}
}
#[cfg(feature = "extra-traits")]
#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
impl Hash for Nothing {
fn hash<H: Hasher>(&self, _state: &mut H) {}
}