1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
// Copyright 2015 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use core::marker::PhantomData;

use crate::{error::DerTypeId, Error};

#[derive(Debug)]
pub struct DerIterator<'a, T> {
    reader: untrusted::Reader<'a>,
    marker: PhantomData<T>,
}

impl<'a, T> DerIterator<'a, T> {
    /// [`DerIterator`] will consume all of the bytes in `input` reading values of type `T`.
    pub(crate) fn new(input: untrusted::Input<'a>) -> Self {
        Self {
            reader: untrusted::Reader::new(input),
            marker: PhantomData,
        }
    }
}

impl<'a, T: FromDer<'a>> Iterator for DerIterator<'a, T> {
    type Item = Result<T, Error>;

    fn next(&mut self) -> Option<Self::Item> {
        (!self.reader.at_end()).then(|| T::from_der(&mut self.reader))
    }
}

pub(crate) trait FromDer<'a>: Sized + 'a {
    /// Parse a value of type `Self` from the given DER-encoded input.
    fn from_der(reader: &mut untrusted::Reader<'a>) -> Result<Self, Error>;

    const TYPE_ID: DerTypeId;
}

pub(crate) fn read_all<'a, T: FromDer<'a>>(input: untrusted::Input<'a>) -> Result<T, Error> {
    input.read_all(Error::TrailingData(T::TYPE_ID), T::from_der)
}

// Copied (and extended) from ring's src/der.rs
#[allow(clippy::upper_case_acronyms)]
#[derive(Clone, Copy, Eq, PartialEq)]
#[repr(u8)]
pub(crate) enum Tag {
    Boolean = 0x01,
    Integer = 0x02,
    BitString = 0x03,
    OctetString = 0x04,
    OID = 0x06,
    Enum = 0x0A,
    Sequence = CONSTRUCTED | 0x10, // 0x30
    UTCTime = 0x17,
    GeneralizedTime = 0x18,

    #[allow(clippy::identity_op)]
    ContextSpecificConstructed0 = CONTEXT_SPECIFIC | CONSTRUCTED | 0,
    ContextSpecificConstructed1 = CONTEXT_SPECIFIC | CONSTRUCTED | 1,
    ContextSpecificConstructed3 = CONTEXT_SPECIFIC | CONSTRUCTED | 3,
}

pub(crate) const CONSTRUCTED: u8 = 0x20;
pub(crate) const CONTEXT_SPECIFIC: u8 = 0x80;

impl From<Tag> for usize {
    #[allow(clippy::as_conversions)]
    fn from(tag: Tag) -> Self {
        tag as Self
    }
}

impl From<Tag> for u8 {
    #[allow(clippy::as_conversions)]
    fn from(tag: Tag) -> Self {
        tag as Self
    } // XXX: narrowing conversion.
}

#[inline(always)]
pub(crate) fn expect_tag_and_get_value_limited<'a>(
    input: &mut untrusted::Reader<'a>,
    tag: Tag,
    size_limit: usize,
) -> Result<untrusted::Input<'a>, Error> {
    let (actual_tag, inner) = read_tag_and_get_value_limited(input, size_limit)?;
    if usize::from(tag) != usize::from(actual_tag) {
        return Err(Error::BadDer);
    }
    Ok(inner)
}

pub(crate) fn nested_limited<'a, R>(
    input: &mut untrusted::Reader<'a>,
    tag: Tag,
    error: Error,
    decoder: impl FnOnce(&mut untrusted::Reader<'a>) -> Result<R, Error>,
    size_limit: usize,
) -> Result<R, Error> {
    expect_tag_and_get_value_limited(input, tag, size_limit)
        .map_err(|_| error)?
        .read_all(error, decoder)
}

// TODO: investigate taking decoder as a reference to reduce generated code
// size.
pub(crate) fn nested<'a, R>(
    input: &mut untrusted::Reader<'a>,
    tag: Tag,
    error: Error,
    decoder: impl FnOnce(&mut untrusted::Reader<'a>) -> Result<R, Error>,
) -> Result<R, Error> {
    nested_limited(input, tag, error, decoder, TWO_BYTE_DER_SIZE)
}

pub(crate) fn expect_tag<'a>(
    input: &mut untrusted::Reader<'a>,
    tag: Tag,
) -> Result<untrusted::Input<'a>, Error> {
    let (actual_tag, value) = read_tag_and_get_value_limited(input, TWO_BYTE_DER_SIZE)?;
    if usize::from(tag) != usize::from(actual_tag) {
        return Err(Error::BadDer);
    }

    Ok(value)
}

#[inline(always)]
pub(crate) fn read_tag_and_get_value<'a>(
    input: &mut untrusted::Reader<'a>,
) -> Result<(u8, untrusted::Input<'a>), Error> {
    read_tag_and_get_value_limited(input, TWO_BYTE_DER_SIZE)
}

#[inline(always)]
pub(crate) fn read_tag_and_get_value_limited<'a>(
    input: &mut untrusted::Reader<'a>,
    size_limit: usize,
) -> Result<(u8, untrusted::Input<'a>), Error> {
    let tag = input.read_byte().map_err(end_of_input_err)?;
    if (tag & HIGH_TAG_RANGE_START) == HIGH_TAG_RANGE_START {
        return Err(Error::BadDer); // High tag number form is not allowed.
    }

    // If the high order bit of the first byte is set to zero then the length
    // is encoded in the seven remaining bits of that byte. Otherwise, those
    // seven bits represent the number of bytes used to encode the length.
    let length = match input.read_byte().map_err(end_of_input_err)? {
        n if (n & SHORT_FORM_LEN_MAX) == 0 => usize::from(n),
        LONG_FORM_LEN_ONE_BYTE => {
            let length_byte = input.read_byte().map_err(end_of_input_err)?;
            if length_byte < SHORT_FORM_LEN_MAX {
                return Err(Error::BadDer); // Not the canonical encoding.
            }
            usize::from(length_byte)
        }
        LONG_FORM_LEN_TWO_BYTES => {
            let length_byte_one = usize::from(input.read_byte().map_err(end_of_input_err)?);
            let length_byte_two = usize::from(input.read_byte().map_err(end_of_input_err)?);
            let combined = (length_byte_one << 8) | length_byte_two;
            if combined <= LONG_FORM_LEN_ONE_BYTE_MAX {
                return Err(Error::BadDer); // Not the canonical encoding.
            }
            combined
        }
        LONG_FORM_LEN_THREE_BYTES => {
            let length_byte_one = usize::from(input.read_byte().map_err(end_of_input_err)?);
            let length_byte_two = usize::from(input.read_byte().map_err(end_of_input_err)?);
            let length_byte_three = usize::from(input.read_byte().map_err(end_of_input_err)?);
            let combined = (length_byte_one << 16) | (length_byte_two << 8) | length_byte_three;
            if combined <= LONG_FORM_LEN_TWO_BYTES_MAX {
                return Err(Error::BadDer); // Not the canonical encoding.
            }
            combined
        }
        LONG_FORM_LEN_FOUR_BYTES => {
            let length_byte_one = usize::from(input.read_byte().map_err(end_of_input_err)?);
            let length_byte_two = usize::from(input.read_byte().map_err(end_of_input_err)?);
            let length_byte_three = usize::from(input.read_byte().map_err(end_of_input_err)?);
            let length_byte_four = usize::from(input.read_byte().map_err(end_of_input_err)?);
            let combined = (length_byte_one << 24)
                | (length_byte_two << 16)
                | (length_byte_three << 8)
                | length_byte_four;
            if combined <= LONG_FORM_LEN_THREE_BYTES_MAX {
                return Err(Error::BadDer); // Not the canonical encoding.
            }
            combined
        }
        _ => {
            return Err(Error::BadDer); // We don't support longer lengths.
        }
    };

    if length >= size_limit {
        return Err(Error::BadDer); // The length is larger than the caller accepts.
    }

    let inner = input.read_bytes(length).map_err(end_of_input_err)?;
    Ok((tag, inner))
}

/// Prepend `bytes` with the given ASN.1 [`Tag`] and appropriately encoded length byte(s).
/// Useful for "adding back" ASN.1 bytes to parsed content.
#[cfg(feature = "alloc")]
#[allow(clippy::as_conversions)]
pub(crate) fn asn1_wrap(tag: Tag, bytes: &[u8]) -> Vec<u8> {
    let len = bytes.len();
    // The length is encoded differently depending on how many bytes there are
    if len < SHORT_FORM_LEN_MAX.into() {
        // Short form: the length is encoded using a single byte
        // Contents: Tag byte, single length byte, and passed bytes
        let mut ret = Vec::with_capacity(2 + len);
        ret.push(tag.into()); // Tag byte
        ret.push(len as u8); // Single length byte
        ret.extend_from_slice(bytes); // Passed bytes
        ret
    } else {
        // Long form: The length is encoded using multiple bytes
        // Contents: Tag byte, number-of-length-bytes byte, length bytes, and passed bytes
        // The first byte indicates how many more bytes will be used to encode the length
        // First, get a big-endian representation of the byte slice's length
        let size = len.to_be_bytes();
        // Find the number of leading empty bytes in that representation
        // This will determine the smallest number of bytes we need to encode the length
        let leading_zero_bytes = size
            .iter()
            .position(|&byte| byte != 0)
            .unwrap_or(size.len());
        assert!(leading_zero_bytes < size.len());
        // Number of bytes used - number of not needed bytes = smallest number needed
        let encoded_bytes = size.len() - leading_zero_bytes;
        let mut ret = Vec::with_capacity(2 + encoded_bytes + len);
        // Indicate this is a number-of-length-bytes byte by setting the high order bit
        let number_of_length_bytes_byte = SHORT_FORM_LEN_MAX + encoded_bytes as u8;
        ret.push(tag.into()); // Tag byte
        ret.push(number_of_length_bytes_byte); // Number-of-length-bytes byte
        ret.extend_from_slice(&size[leading_zero_bytes..]); // Length bytes
        ret.extend_from_slice(bytes); // Passed bytes
        ret
    }
}

// Long-form DER encoded lengths of two bytes can express lengths up to the following limit.
//
// The upstream ring::io::der::read_tag_and_get_value() function limits itself to up to two byte
// long-form DER lengths, and so this limit represents the maximum length that was possible to
// read before the introduction of the read_tag_and_get_value_limited function.
pub(crate) const TWO_BYTE_DER_SIZE: usize = LONG_FORM_LEN_TWO_BYTES_MAX;

// The maximum size of a DER value that Webpki can support reading.
//
// Webpki limits itself to four byte long-form DER lengths, and so this limit represents
// the maximum size tagged DER value that can be read for any purpose.
pub(crate) const MAX_DER_SIZE: usize = LONG_FORM_LEN_FOUR_BYTES_MAX;

// DER Tag identifiers have two forms:
// * Low tag number form (for tags values in the range [0..30]
// * High tag number form (for tag values in the range [31..]
// We only support low tag number form.
const HIGH_TAG_RANGE_START: u8 = 31;

// DER length octets have two forms:
// * Short form: 1 octet supporting lengths between 0 and 127.
// * Long definite form: 2 to 127 octets, number of octets encoded into first octet.
const SHORT_FORM_LEN_MAX: u8 = 128;

// Leading octet for long definite form DER length expressed in second byte.
const LONG_FORM_LEN_ONE_BYTE: u8 = 0x81;

// Maximum size that can be expressed in a one byte long form len.
const LONG_FORM_LEN_ONE_BYTE_MAX: usize = 0xff;

// Leading octet for long definite form DER length expressed in subsequent two bytes.
const LONG_FORM_LEN_TWO_BYTES: u8 = 0x82;

// Maximum size that can be expressed in a two byte long form len.
const LONG_FORM_LEN_TWO_BYTES_MAX: usize = 0xff_ff;

// Leading octet for long definite form DER length expressed in subsequent three bytes.
const LONG_FORM_LEN_THREE_BYTES: u8 = 0x83;

// Maximum size that can be expressed in a three byte long form len.
const LONG_FORM_LEN_THREE_BYTES_MAX: usize = 0xff_ff_ff;

// Leading octet for long definite form DER length expressed in subsequent four bytes.
const LONG_FORM_LEN_FOUR_BYTES: u8 = 0x84;

// Maximum size that can be expressed in a four byte long form der len.
const LONG_FORM_LEN_FOUR_BYTES_MAX: usize = 0xff_ff_ff_ff;

// TODO: investigate taking decoder as a reference to reduce generated code
// size.
pub(crate) fn nested_of_mut<'a>(
    input: &mut untrusted::Reader<'a>,
    outer_tag: Tag,
    inner_tag: Tag,
    error: Error,
    mut decoder: impl FnMut(&mut untrusted::Reader<'a>) -> Result<(), Error>,
) -> Result<(), Error> {
    nested(input, outer_tag, error, |outer| {
        loop {
            nested(outer, inner_tag, error, |inner| decoder(inner))?;
            if outer.at_end() {
                break;
            }
        }
        Ok(())
    })
}

pub(crate) fn bit_string_with_no_unused_bits<'a>(
    input: &mut untrusted::Reader<'a>,
) -> Result<untrusted::Input<'a>, Error> {
    nested(
        input,
        Tag::BitString,
        Error::TrailingData(DerTypeId::BitString),
        |value| {
            let unused_bits_at_end = value.read_byte().map_err(|_| Error::BadDer)?;
            if unused_bits_at_end != 0 {
                return Err(Error::BadDer);
            }
            Ok(value.read_bytes_to_end())
        },
    )
}

pub(crate) struct BitStringFlags<'a> {
    raw_bits: &'a [u8],
}

impl<'a> BitStringFlags<'a> {
    pub(crate) fn bit_set(&self, bit: usize) -> bool {
        let byte_index = bit / 8;
        let bit_shift = 7 - (bit % 8);

        if self.raw_bits.len() < (byte_index + 1) {
            false
        } else {
            ((self.raw_bits[byte_index] >> bit_shift) & 1) != 0
        }
    }
}

// ASN.1 BIT STRING fields for sets of flags are encoded in DER with some peculiar details related
// to padding. Notably this means we expect an indicator of the number of bits of padding, and then
// the actual bit values. See this Stack Overflow discussion[0], and ITU X690-0207[1] Section 8.6
// and Section 11.2 for more information.
//
// [0]: https://security.stackexchange.com/a/10396
// [1]: https://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
pub(crate) fn bit_string_flags(input: untrusted::Input) -> Result<BitStringFlags<'_>, Error> {
    input.read_all(Error::BadDer, |bit_string| {
        // ITU X690-0207 11.2:
        //   "The initial octet shall encode, as an unsigned binary integer with bit 1 as the least
        //   significant bit, the number of unused bits in the final subsequent octet.
        //   The number shall be in the range zero to seven"
        let padding_bits = bit_string.read_byte().map_err(|_| Error::BadDer)?;
        let raw_bits = bit_string.read_bytes_to_end().as_slice_less_safe();

        // It's illegal to have more than 7 bits of padding. Similarly, if the raw bitflags
        // are empty there should be no padding.
        if padding_bits > 7 || (raw_bits.is_empty() && padding_bits != 0) {
            return Err(Error::BadDer);
        }

        // If there are padding bits then the last bit of the last raw byte must be 0 or the
        // distinguished encoding rules are not being followed.
        let last_byte = raw_bits[raw_bits.len() - 1];
        let padding_mask = (1 << padding_bits) - 1;

        match padding_bits > 0 && (last_byte & padding_mask) != 0 {
            true => Err(Error::BadDer),
            false => Ok(BitStringFlags { raw_bits }),
        }
    })
}

impl<'a> FromDer<'a> for u8 {
    fn from_der(reader: &mut untrusted::Reader<'a>) -> Result<Self, Error> {
        match *nonnegative_integer(reader)?.as_slice_less_safe() {
            [b] => Ok(b),
            _ => Err(Error::BadDer),
        }
    }

    const TYPE_ID: DerTypeId = DerTypeId::U8;
}

pub(crate) fn nonnegative_integer<'a>(
    input: &mut untrusted::Reader<'a>,
) -> Result<untrusted::Input<'a>, Error> {
    let value = expect_tag(input, Tag::Integer)?;
    match value
        .as_slice_less_safe()
        .split_first()
        .ok_or(Error::BadDer)?
    {
        // Zero or leading zero.
        (0, rest) => {
            match rest.first() {
                // Zero
                None => Ok(value),
                // Necessary leading zero.
                Some(&second) if second & 0x80 == 0x80 => Ok(untrusted::Input::from(rest)),
                // Unnecessary leading zero.
                _ => Err(Error::BadDer),
            }
        }
        // Positive value with no leading zero.
        (first, _) if first & 0x80 == 0x00 => Ok(value),
        // Negative value.
        (_, _) => Err(Error::BadDer),
    }
}

pub(crate) fn end_of_input_err(_: untrusted::EndOfInput) -> Error {
    Error::BadDer
}

// Like mozilla::pkix, we accept the nonconformant explicit encoding of
// the default value (false) for compatibility with real-world certificates.
impl<'a> FromDer<'a> for bool {
    fn from_der(reader: &mut untrusted::Reader<'a>) -> Result<Self, Error> {
        if !reader.peek(Tag::Boolean.into()) {
            return Ok(false);
        }

        nested(
            reader,
            Tag::Boolean,
            Error::TrailingData(Self::TYPE_ID),
            |input| match input.read_byte() {
                Ok(0xff) => Ok(true),
                Ok(0x00) => Ok(false),
                _ => Err(Error::BadDer),
            },
        )
    }

    const TYPE_ID: DerTypeId = DerTypeId::Bool;
}

macro_rules! oid {
    ( $first:expr, $second:expr, $( $tail:expr ),* ) =>
    (
        [(40 * $first) + $second, $( $tail ),*]
    )
}

#[cfg(test)]
mod tests {
    use super::DerTypeId;
    use std::prelude::v1::*;

    #[cfg(feature = "alloc")]
    #[test]
    fn test_asn1_wrap() {
        // Prepend stuff to `bytes` to put it in a DER SEQUENCE.
        let wrap_in_sequence = |bytes: &[u8]| super::asn1_wrap(super::Tag::Sequence, bytes);

        // Empty slice
        assert_eq!(vec![0x30, 0x00], wrap_in_sequence(&[]));

        // Small size
        assert_eq!(
            vec![0x30, 0x04, 0x00, 0x11, 0x22, 0x33],
            wrap_in_sequence(&[0x00, 0x11, 0x22, 0x33])
        );

        // Medium size
        let mut val = Vec::new();
        val.resize(255, 0x12);
        assert_eq!(
            vec![0x30, 0x81, 0xff, 0x12, 0x12, 0x12],
            wrap_in_sequence(&val)[..6]
        );

        // Large size
        let mut val = Vec::new();
        val.resize(4660, 0x12);
        wrap_in_sequence(&val);
        assert_eq!(
            vec![0x30, 0x82, 0x12, 0x34, 0x12, 0x12],
            wrap_in_sequence(&val)[..6]
        );

        // Huge size
        let mut val = Vec::new();
        val.resize(0xffff, 0x12);
        let result = wrap_in_sequence(&val);
        assert_eq!(vec![0x30, 0x82, 0xff, 0xff, 0x12, 0x12], result[..6]);
        assert_eq!(result.len(), 0xffff + 4);

        // Gigantic size
        let mut val = Vec::new();
        val.resize(0x100000, 0x12);
        let result = wrap_in_sequence(&val);
        assert_eq!(vec![0x30, 0x83, 0x10, 0x00, 0x00, 0x12, 0x12], result[..7]);
        assert_eq!(result.len(), 0x100000 + 5);

        // Ludicrous size
        let mut val = Vec::new();
        val.resize(0x1000000, 0x12);
        let result = wrap_in_sequence(&val);
        assert_eq!(
            vec![0x30, 0x84, 0x01, 0x00, 0x00, 0x00, 0x12, 0x12],
            result[..8]
        );
        assert_eq!(result.len(), 0x1000000 + 6);
    }

    #[test]
    fn test_optional_boolean() {
        use super::{Error, FromDer};

        // Empty input results in false
        assert!(!bool::from_der(&mut bytes_reader(&[])).unwrap());

        // Optional, so another data type results in false
        assert!(!bool::from_der(&mut bytes_reader(&[0x05, 0x00])).unwrap());

        // Only 0x00 and 0xff are accepted values
        assert_eq!(
            Err(Error::BadDer),
            bool::from_der(&mut bytes_reader(&[0x01, 0x01, 0x42]))
        );

        // True
        assert!(bool::from_der(&mut bytes_reader(&[0x01, 0x01, 0xff])).unwrap());

        // False
        assert!(!bool::from_der(&mut bytes_reader(&[0x01, 0x01, 0x00])).unwrap());
    }

    #[test]
    fn test_bit_string_with_no_unused_bits() {
        use super::{bit_string_with_no_unused_bits, Error};

        // Unexpected type
        assert_eq!(
            bit_string_with_no_unused_bits(&mut bytes_reader(&[0x01, 0x01, 0xff])).unwrap_err(),
            Error::TrailingData(DerTypeId::BitString),
        );

        // Unexpected nonexistent type
        assert_eq!(
            bit_string_with_no_unused_bits(&mut bytes_reader(&[0x42, 0xff, 0xff])).unwrap_err(),
            Error::TrailingData(DerTypeId::BitString),
        );

        // Unexpected empty input
        assert_eq!(
            bit_string_with_no_unused_bits(&mut bytes_reader(&[])).unwrap_err(),
            Error::TrailingData(DerTypeId::BitString),
        );

        // Valid input with non-zero unused bits
        assert_eq!(
            bit_string_with_no_unused_bits(&mut bytes_reader(&[0x03, 0x03, 0x04, 0x12, 0x34]))
                .unwrap_err(),
            Error::BadDer,
        );

        // Valid input
        assert_eq!(
            bit_string_with_no_unused_bits(&mut bytes_reader(&[0x03, 0x03, 0x00, 0x12, 0x34]))
                .unwrap()
                .as_slice_less_safe(),
            &[0x12, 0x34],
        );
    }

    fn bytes_reader(bytes: &[u8]) -> untrusted::Reader {
        return untrusted::Reader::new(untrusted::Input::from(bytes));
    }

    #[test]
    fn read_tag_and_get_value_default_limit() {
        use super::{read_tag_and_get_value, Error};

        let inputs = &[
            // DER with short-form length encoded as three bytes.
            &[EXAMPLE_TAG, 0x83, 0xFF, 0xFF, 0xFF].as_slice(),
            // DER with short-form length encoded as four bytes.
            &[EXAMPLE_TAG, 0x84, 0xFF, 0xFF, 0xFF, 0xFF].as_slice(),
        ];

        for input in inputs {
            let mut bytes = untrusted::Reader::new(untrusted::Input::from(input));
            // read_tag_and_get_value should reject DER with encoded lengths larger than two
            // bytes as BadDer.
            assert!(matches!(
                read_tag_and_get_value(&mut bytes),
                Err(Error::BadDer)
            ));
        }
    }

    #[test]
    fn read_tag_and_get_value_limited_high_form() {
        use super::{read_tag_and_get_value_limited, Error, LONG_FORM_LEN_TWO_BYTES_MAX};

        let mut bytes = untrusted::Reader::new(untrusted::Input::from(&[0xFF]));
        // read_tag_and_get_value_limited_high_form should reject DER with "high tag number form" tags.
        assert!(matches!(
            read_tag_and_get_value_limited(&mut bytes, LONG_FORM_LEN_TWO_BYTES_MAX),
            Err(Error::BadDer)
        ));
    }

    #[test]
    fn read_tag_and_get_value_limited_non_canonical() {
        use super::{read_tag_and_get_value_limited, Error, LONG_FORM_LEN_TWO_BYTES_MAX};

        let inputs = &[
            // Two byte length, with expressed length < 128.
            &[EXAMPLE_TAG, 0x81, 0x01].as_slice(),
            // Three byte length, with expressed length < 256.
            &[EXAMPLE_TAG, 0x82, 0x00, 0x01].as_slice(),
            // Four byte length, with expressed length, < 65536.
            &[EXAMPLE_TAG, 0x83, 0x00, 0x00, 0x01].as_slice(),
            // Five byte length, with expressed length < 16777216.
            &[EXAMPLE_TAG, 0x84, 0x00, 0x00, 0x00, 0x01].as_slice(),
        ];

        for input in inputs {
            let mut bytes = untrusted::Reader::new(untrusted::Input::from(input));
            // read_tag_and_get_value_limited should reject DER with non-canonical lengths.
            assert!(matches!(
                read_tag_and_get_value_limited(&mut bytes, LONG_FORM_LEN_TWO_BYTES_MAX),
                Err(Error::BadDer)
            ));
        }
    }

    #[test]
    #[cfg(feature = "alloc")]
    fn read_tag_and_get_value_limited_limits() {
        use super::{read_tag_and_get_value_limited, Error};

        let short_input = &[0xFF];
        let short_input_encoded = &[
            &[EXAMPLE_TAG],
            der_encode_length(short_input.len()).as_slice(),
            short_input,
        ]
        .concat();

        let long_input = &[1_u8; 65537];
        let long_input_encoded = &[
            &[EXAMPLE_TAG],
            der_encode_length(long_input.len()).as_slice(),
            long_input,
        ]
        .concat();

        struct Testcase<'a> {
            input: &'a [u8],
            limit: usize,
            err: Option<Error>,
        }

        let testcases = &[
            Testcase {
                input: short_input_encoded,
                limit: 1,
                err: Some(Error::BadDer),
            },
            Testcase {
                input: short_input_encoded,
                limit: short_input_encoded.len() + 1,
                err: None,
            },
            Testcase {
                input: long_input_encoded,
                limit: long_input.len(),
                err: Some(Error::BadDer),
            },
            Testcase {
                input: long_input_encoded,
                limit: long_input.len() + 1,
                err: None,
            },
        ];

        for tc in testcases {
            let mut bytes = untrusted::Reader::new(untrusted::Input::from(tc.input));

            let res = read_tag_and_get_value_limited(&mut bytes, tc.limit);
            match tc.err {
                None => assert!(res.is_ok()),
                Some(e) => {
                    let actual = res.unwrap_err();
                    assert_eq!(actual, e)
                }
            }
        }
    }

    #[allow(clippy::as_conversions)] // infallible.
    const EXAMPLE_TAG: u8 = super::Tag::Sequence as u8;

    #[cfg(feature = "alloc")]
    #[allow(clippy::as_conversions)] // test code.
    fn der_encode_length(length: usize) -> Vec<u8> {
        if length < 128 {
            vec![length as u8]
        } else {
            let mut encoded: Vec<u8> = Vec::new();
            let mut remaining_length = length;

            while remaining_length > 0 {
                let byte = (remaining_length & 0xFF) as u8;
                encoded.insert(0, byte);
                remaining_length >>= 8;
            }

            let length_octet = encoded.len() as u8 | 0x80;
            encoded.insert(0, length_octet);

            encoded
        }
    }

    #[test]
    fn misencoded_bit_string_flags() {
        use super::{bit_string_flags, Error};

        let bad_padding_example = untrusted::Input::from(&[
            0x08, // 8 bit of padding (illegal!).
            0x06, // 1 byte of bit flags asserting bits 5 and 6.
        ]);
        assert!(matches!(
            bit_string_flags(bad_padding_example),
            Err(Error::BadDer)
        ));

        let bad_padding_example = untrusted::Input::from(&[
            0x01, // 1 bit of padding.
                 // No flags value (illegal with padding!).
        ]);
        assert!(matches!(
            bit_string_flags(bad_padding_example),
            Err(Error::BadDer)
        ));
    }

    #[test]
    fn valid_bit_string_flags() {
        use super::bit_string_flags;

        let example_key_usage = untrusted::Input::from(&[
            0x01, // 1 bit of padding.
            0x06, // 1 byte of bit flags asserting bits 5 and 6.
        ]);
        let res = bit_string_flags(example_key_usage).unwrap();

        assert!(!res.bit_set(0));
        assert!(!res.bit_set(1));
        assert!(!res.bit_set(2));
        assert!(!res.bit_set(3));
        assert!(!res.bit_set(4));
        // NB: Bits 5 and 6 should be set.
        assert!(res.bit_set(5));
        assert!(res.bit_set(6));
        assert!(!res.bit_set(7));
        assert!(!res.bit_set(8));
        // Bits outside the range of values shouldn't be considered set.
        assert!(!res.bit_set(256));
    }

    #[test]
    fn test_small_nonnegative_integer() {
        use super::{Error, FromDer, Tag};

        for value in 0..=127 {
            let data = [Tag::Integer.into(), 1, value];
            let mut rd = untrusted::Reader::new(untrusted::Input::from(&data));
            assert_eq!(u8::from_der(&mut rd), Ok(value),);
        }

        for value in 128..=255 {
            let data = [Tag::Integer.into(), 2, 0x00, value];
            let mut rd = untrusted::Reader::new(untrusted::Input::from(&data));
            assert_eq!(u8::from_der(&mut rd), Ok(value),);
        }

        // not an integer
        assert_eq!(
            u8::from_der(&mut untrusted::Reader::new(untrusted::Input::from(&[
                Tag::Sequence.into(),
                1,
                1
            ]))),
            Err(Error::BadDer)
        );

        // negative
        assert_eq!(
            u8::from_der(&mut untrusted::Reader::new(untrusted::Input::from(&[
                Tag::Integer.into(),
                1,
                0xff
            ]))),
            Err(Error::BadDer)
        );

        // positive but too large
        assert_eq!(
            u8::from_der(&mut untrusted::Reader::new(untrusted::Input::from(&[
                Tag::Integer.into(),
                2,
                0x01,
                0x00
            ]))),
            Err(Error::BadDer)
        );

        // unnecessary leading zero
        assert_eq!(
            u8::from_der(&mut untrusted::Reader::new(untrusted::Input::from(&[
                Tag::Integer.into(),
                2,
                0x00,
                0x05
            ]))),
            Err(Error::BadDer)
        );

        // truncations
        assert_eq!(
            u8::from_der(&mut untrusted::Reader::new(untrusted::Input::from(&[]))),
            Err(Error::BadDer)
        );

        assert_eq!(
            u8::from_der(&mut untrusted::Reader::new(untrusted::Input::from(&[
                Tag::Integer.into(),
            ]))),
            Err(Error::BadDer)
        );

        assert_eq!(
            u8::from_der(&mut untrusted::Reader::new(untrusted::Input::from(&[
                Tag::Integer.into(),
                1,
            ]))),
            Err(Error::BadDer)
        );

        assert_eq!(
            u8::from_der(&mut untrusted::Reader::new(untrusted::Input::from(&[
                Tag::Integer.into(),
                2,
                0
            ]))),
            Err(Error::BadDer)
        );
    }
}