webpki/
end_entity.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Copyright 2015-2021 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

use core::ops::Deref;

use pki_types::{
    CertificateDer, ServerName, SignatureVerificationAlgorithm, TrustAnchor, UnixTime,
};

use crate::crl::RevocationOptions;
use crate::error::Error;
use crate::subject_name::{verify_dns_names, verify_ip_address_names, NameIterator};
use crate::verify_cert::{self, KeyUsage, VerifiedPath};
use crate::{cert, signed_data};

/// An end-entity certificate.
///
/// Server certificate processing in a TLS connection consists of several
/// steps. All of these steps are necessary:
///
/// * `EndEntityCert.verify_is_valid_tls_server_cert`: Verify that the server's
///   certificate is currently valid *for use by a TLS server*.
/// * `EndEntityCert.verify_is_valid_for_subject_name`: Verify that the server's
///   certificate is valid for the host or IP address that is being connected to.
///
/// * `EndEntityCert.verify_signature`: Verify that the signature of server's
///   `ServerKeyExchange` message is valid for the server's certificate.
///
/// Client certificate processing in a TLS connection consists of analogous
/// steps. All of these steps are necessary:
///
/// * `EndEntityCert.verify_is_valid_tls_client_cert`: Verify that the client's
///   certificate is currently valid *for use by a TLS client*.
/// * `EndEntityCert.verify_signature`: Verify that the client's signature in
///   its `CertificateVerify` message is valid using the public key from the
///   client's certificate.
///
/// Although it would be less error-prone to combine all these steps into a
/// single function call, some significant optimizations are possible if the
/// three steps are processed separately (in parallel). It does not matter much
/// which order the steps are done in, but **all of these steps must completed
/// before application data is sent and before received application data is
/// processed**. `EndEntityCert::from` is an inexpensive operation and is
/// deterministic, so if these tasks are done in multiple threads, it is
/// probably best to just call `EndEntityCert::from` multiple times (before each
/// operation) for the same DER-encoded ASN.1 certificate bytes.
pub struct EndEntityCert<'a> {
    inner: cert::Cert<'a>,
}

impl<'a> TryFrom<&'a CertificateDer<'a>> for EndEntityCert<'a> {
    type Error = Error;

    /// Parse the ASN.1 DER-encoded X.509 encoding of the certificate
    /// `cert_der`.
    fn try_from(cert: &'a CertificateDer<'a>) -> Result<Self, Self::Error> {
        Ok(Self {
            inner: cert::Cert::from_der(untrusted::Input::from(cert.as_ref()))?,
        })
    }
}

impl<'a> EndEntityCert<'a> {
    /// Verifies that the end-entity certificate is valid for use against the
    /// specified Extended Key Usage (EKU).
    ///
    /// * `supported_sig_algs` is the list of signature algorithms that are
    ///   trusted for use in certificate signatures; the end-entity certificate's
    ///   public key is not validated against this list.
    /// * `trust_anchors` is the list of root CAs to trust in the built path.
    /// * `intermediate_certs` is the sequence of intermediate certificates that
    ///   a peer sent for the purpose of path building.
    /// * `time` is the time for which the validation is effective (usually the
    ///   current time).
    /// * `usage` is the intended usage of the certificate, indicating what kind
    ///   of usage we're verifying the certificate for.
    /// * `crls` is the list of certificate revocation lists to check
    ///   the certificate against.
    /// * `verify_path` is an optional verification function for path candidates.
    ///
    /// If successful, yields a `VerifiedPath` type that can be used to inspect a verified chain
    /// of certificates that leads from the `end_entity` to one of the `self.trust_anchors`.
    ///
    /// `verify_path` will only be called for potentially verified paths, that is, paths that
    /// have been verified up to the trust anchor. As such, `verify_path()` cannot be used to
    /// verify a path that doesn't satisfy the constraints listed above; it can only be used to
    /// reject a path that does satisfy the aforementioned constraints. If `verify_path` returns
    /// an error, path building will continue in order to try other options.
    #[allow(clippy::too_many_arguments)]
    pub fn verify_for_usage<'p>(
        &'p self,
        supported_sig_algs: &[&dyn SignatureVerificationAlgorithm],
        trust_anchors: &'p [TrustAnchor],
        intermediate_certs: &'p [CertificateDer<'p>],
        time: UnixTime,
        usage: KeyUsage,
        revocation: Option<RevocationOptions<'_>>,
        verify_path: Option<&dyn Fn(&VerifiedPath<'_>) -> Result<(), Error>>,
    ) -> Result<VerifiedPath<'p>, Error> {
        verify_cert::ChainOptions {
            eku: usage,
            supported_sig_algs,
            trust_anchors,
            intermediate_certs,
            revocation,
        }
        .build_chain(self, time, verify_path)
    }

    /// Verifies that the certificate is valid for the given Subject Name.
    pub fn verify_is_valid_for_subject_name(
        &self,
        server_name: &ServerName<'_>,
    ) -> Result<(), Error> {
        match server_name {
            ServerName::DnsName(dns_name) => verify_dns_names(
                dns_name,
                NameIterator::new(Some(self.inner.subject), self.inner.subject_alt_name),
            ),
            // IP addresses are not compared against the subject field;
            // only against Subject Alternative Names.
            ServerName::IpAddress(ip_address) => verify_ip_address_names(
                ip_address,
                NameIterator::new(None, self.inner.subject_alt_name),
            ),
            _ => Err(Error::UnsupportedNameType),
        }
    }

    /// Verifies the signature `signature` of message `msg` using the
    /// certificate's public key.
    ///
    /// `signature_alg` is the algorithm to use to
    /// verify the signature; the certificate's public key is verified to be
    /// compatible with this algorithm.
    ///
    /// For TLS 1.2, `signature` corresponds to TLS's
    /// `DigitallySigned.signature` and `signature_alg` corresponds to TLS's
    /// `DigitallySigned.algorithm` of TLS type `SignatureAndHashAlgorithm`. In
    /// TLS 1.2 a single `SignatureAndHashAlgorithm` may map to multiple
    /// `SignatureVerificationAlgorithm`s. For example, a TLS 1.2
    /// `SignatureAndHashAlgorithm` of (ECDSA, SHA-256) may map to any or all
    /// of {`ECDSA_P256_SHA256`, `ECDSA_P384_SHA256`}, depending on how the TLS
    /// implementation is configured.
    ///
    /// For current TLS 1.3 drafts, `signature_alg` corresponds to TLS's
    /// `algorithm` fields of type `SignatureScheme`. There is (currently) a
    /// one-to-one correspondence between TLS 1.3's `SignatureScheme` and
    /// `SignatureVerificationAlgorithm`.
    pub fn verify_signature(
        &self,
        signature_alg: &dyn SignatureVerificationAlgorithm,
        msg: &[u8],
        signature: &[u8],
    ) -> Result<(), Error> {
        signed_data::verify_signature(
            signature_alg,
            self.inner.spki,
            untrusted::Input::from(msg),
            untrusted::Input::from(signature),
        )
    }
}

impl<'a> Deref for EndEntityCert<'a> {
    type Target = cert::Cert<'a>;

    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

#[cfg(feature = "alloc")]
#[cfg(test)]
mod tests {
    use super::*;
    use crate::test_utils;
    use crate::test_utils::RCGEN_SIGNATURE_ALG;
    use std::prelude::v1::*;

    // This test reproduces https://github.com/rustls/webpki/issues/167 --- an
    // end-entity cert where the common name is a `PrintableString` rather than
    // a `UTF8String` cannot iterate over its subject alternative names.
    #[test]
    fn printable_string_common_name() {
        const DNS_NAME: &str = "test.example.com";

        let issuer = test_utils::make_issuer("Test");

        let ee_cert = {
            let mut params = test_utils::end_entity_params(vec![DNS_NAME.to_string()]);
            // construct a certificate that uses `PrintableString` as the
            // common name value, rather than `UTF8String`.
            params.distinguished_name.push(
                rcgen::DnType::CommonName,
                rcgen::DnValue::PrintableString(
                    rcgen::PrintableString::try_from("example.com").unwrap(),
                ),
            );
            params
                .signed_by(
                    &rcgen::KeyPair::generate_for(RCGEN_SIGNATURE_ALG).unwrap(),
                    &issuer.cert,
                    &issuer.key_pair,
                )
                .expect("failed to make ee cert (this is a test bug)")
        };

        expect_dns_name(ee_cert.der(), DNS_NAME);
    }

    // This test reproduces https://github.com/rustls/webpki/issues/167 --- an
    // end-entity cert where the common name is an empty SEQUENCE.
    #[test]
    fn empty_sequence_common_name() {
        let ee_cert_der = {
            // handcrafted cert DER produced using `ascii2der`, since `rcgen` is
            // unwilling to generate this particular weird cert.
            let bytes = include_bytes!("../tests/misc/empty_sequence_common_name.der");
            CertificateDer::from(&bytes[..])
        };
        expect_dns_name(&ee_cert_der, "example.com");
    }

    fn expect_dns_name(der: &CertificateDer<'_>, name: &str) {
        let cert =
            EndEntityCert::try_from(der).expect("should parse end entity certificate correctly");

        let mut names = cert.valid_dns_names();
        assert_eq!(names.next(), Some(name));
        assert_eq!(names.next(), None);
    }
}