1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
//! Provides the [GeneralPurpose] engine and associated config types.
use crate::{
alphabet,
alphabet::Alphabet,
engine::{Config, DecodeMetadata, DecodePaddingMode},
DecodeError,
};
use core::convert::TryInto;
mod decode;
pub(crate) mod decode_suffix;
pub use decode::GeneralPurposeEstimate;
pub(crate) const INVALID_VALUE: u8 = 255;
/// A general-purpose base64 engine.
///
/// - It uses no vector CPU instructions, so it will work on any system.
/// - It is reasonably fast (~2-3GiB/s).
/// - It is not constant-time, though, so it is vulnerable to timing side-channel attacks. For loading cryptographic keys, etc, it is suggested to use the forthcoming constant-time implementation.
pub struct GeneralPurpose {
encode_table: [u8; 64],
decode_table: [u8; 256],
config: GeneralPurposeConfig,
}
impl GeneralPurpose {
/// Create a `GeneralPurpose` engine from an [Alphabet].
///
/// While not very expensive to initialize, ideally these should be cached
/// if the engine will be used repeatedly.
pub const fn new(alphabet: &Alphabet, config: GeneralPurposeConfig) -> Self {
Self {
encode_table: encode_table(alphabet),
decode_table: decode_table(alphabet),
config,
}
}
}
impl super::Engine for GeneralPurpose {
type Config = GeneralPurposeConfig;
type DecodeEstimate = GeneralPurposeEstimate;
fn internal_encode(&self, input: &[u8], output: &mut [u8]) -> usize {
let mut input_index: usize = 0;
const BLOCKS_PER_FAST_LOOP: usize = 4;
const LOW_SIX_BITS: u64 = 0x3F;
// we read 8 bytes at a time (u64) but only actually consume 6 of those bytes. Thus, we need
// 2 trailing bytes to be available to read..
let last_fast_index = input.len().saturating_sub(BLOCKS_PER_FAST_LOOP * 6 + 2);
let mut output_index = 0;
if last_fast_index > 0 {
while input_index <= last_fast_index {
// Major performance wins from letting the optimizer do the bounds check once, mostly
// on the output side
let input_chunk =
&input[input_index..(input_index + (BLOCKS_PER_FAST_LOOP * 6 + 2))];
let output_chunk =
&mut output[output_index..(output_index + BLOCKS_PER_FAST_LOOP * 8)];
// Hand-unrolling for 32 vs 16 or 8 bytes produces yields performance about equivalent
// to unsafe pointer code on a Xeon E5-1650v3. 64 byte unrolling was slightly better for
// large inputs but significantly worse for 50-byte input, unsurprisingly. I suspect
// that it's a not uncommon use case to encode smallish chunks of data (e.g. a 64-byte
// SHA-512 digest), so it would be nice if that fit in the unrolled loop at least once.
// Plus, single-digit percentage performance differences might well be quite different
// on different hardware.
let input_u64 = read_u64(&input_chunk[0..]);
output_chunk[0] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
output_chunk[1] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
output_chunk[2] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
output_chunk[3] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
output_chunk[4] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
output_chunk[5] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
output_chunk[6] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
output_chunk[7] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];
let input_u64 = read_u64(&input_chunk[6..]);
output_chunk[8] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
output_chunk[9] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
output_chunk[10] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
output_chunk[11] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
output_chunk[12] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
output_chunk[13] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
output_chunk[14] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
output_chunk[15] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];
let input_u64 = read_u64(&input_chunk[12..]);
output_chunk[16] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
output_chunk[17] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
output_chunk[18] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
output_chunk[19] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
output_chunk[20] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
output_chunk[21] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
output_chunk[22] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
output_chunk[23] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];
let input_u64 = read_u64(&input_chunk[18..]);
output_chunk[24] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
output_chunk[25] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
output_chunk[26] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
output_chunk[27] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
output_chunk[28] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
output_chunk[29] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
output_chunk[30] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
output_chunk[31] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];
output_index += BLOCKS_PER_FAST_LOOP * 8;
input_index += BLOCKS_PER_FAST_LOOP * 6;
}
}
// Encode what's left after the fast loop.
const LOW_SIX_BITS_U8: u8 = 0x3F;
let rem = input.len() % 3;
let start_of_rem = input.len() - rem;
// start at the first index not handled by fast loop, which may be 0.
while input_index < start_of_rem {
let input_chunk = &input[input_index..(input_index + 3)];
let output_chunk = &mut output[output_index..(output_index + 4)];
output_chunk[0] = self.encode_table[(input_chunk[0] >> 2) as usize];
output_chunk[1] = self.encode_table
[((input_chunk[0] << 4 | input_chunk[1] >> 4) & LOW_SIX_BITS_U8) as usize];
output_chunk[2] = self.encode_table
[((input_chunk[1] << 2 | input_chunk[2] >> 6) & LOW_SIX_BITS_U8) as usize];
output_chunk[3] = self.encode_table[(input_chunk[2] & LOW_SIX_BITS_U8) as usize];
input_index += 3;
output_index += 4;
}
if rem == 2 {
output[output_index] = self.encode_table[(input[start_of_rem] >> 2) as usize];
output[output_index + 1] =
self.encode_table[((input[start_of_rem] << 4 | input[start_of_rem + 1] >> 4)
& LOW_SIX_BITS_U8) as usize];
output[output_index + 2] =
self.encode_table[((input[start_of_rem + 1] << 2) & LOW_SIX_BITS_U8) as usize];
output_index += 3;
} else if rem == 1 {
output[output_index] = self.encode_table[(input[start_of_rem] >> 2) as usize];
output[output_index + 1] =
self.encode_table[((input[start_of_rem] << 4) & LOW_SIX_BITS_U8) as usize];
output_index += 2;
}
output_index
}
fn internal_decoded_len_estimate(&self, input_len: usize) -> Self::DecodeEstimate {
GeneralPurposeEstimate::new(input_len)
}
fn internal_decode(
&self,
input: &[u8],
output: &mut [u8],
estimate: Self::DecodeEstimate,
) -> Result<DecodeMetadata, DecodeError> {
decode::decode_helper(
input,
estimate,
output,
&self.decode_table,
self.config.decode_allow_trailing_bits,
self.config.decode_padding_mode,
)
}
fn config(&self) -> &Self::Config {
&self.config
}
}
/// Returns a table mapping a 6-bit index to the ASCII byte encoding of the index
pub(crate) const fn encode_table(alphabet: &Alphabet) -> [u8; 64] {
// the encode table is just the alphabet:
// 6-bit index lookup -> printable byte
let mut encode_table = [0_u8; 64];
{
let mut index = 0;
while index < 64 {
encode_table[index] = alphabet.symbols[index];
index += 1;
}
}
encode_table
}
/// Returns a table mapping base64 bytes as the lookup index to either:
/// - [INVALID_VALUE] for bytes that aren't members of the alphabet
/// - a byte whose lower 6 bits are the value that was encoded into the index byte
pub(crate) const fn decode_table(alphabet: &Alphabet) -> [u8; 256] {
let mut decode_table = [INVALID_VALUE; 256];
// Since the table is full of `INVALID_VALUE` already, we only need to overwrite
// the parts that are valid.
let mut index = 0;
while index < 64 {
// The index in the alphabet is the 6-bit value we care about.
// Since the index is in 0-63, it is safe to cast to u8.
decode_table[alphabet.symbols[index] as usize] = index as u8;
index += 1;
}
decode_table
}
#[inline]
fn read_u64(s: &[u8]) -> u64 {
u64::from_be_bytes(s[..8].try_into().unwrap())
}
/// Contains configuration parameters for base64 encoding and decoding.
///
/// ```
/// # use base64::engine::GeneralPurposeConfig;
/// let config = GeneralPurposeConfig::new()
/// .with_encode_padding(false);
/// // further customize using `.with_*` methods as needed
/// ```
///
/// The constants [PAD] and [NO_PAD] cover most use cases.
///
/// To specify the characters used, see [Alphabet].
#[derive(Clone, Copy, Debug)]
pub struct GeneralPurposeConfig {
encode_padding: bool,
decode_allow_trailing_bits: bool,
decode_padding_mode: DecodePaddingMode,
}
impl GeneralPurposeConfig {
/// Create a new config with `padding` = `true`, `decode_allow_trailing_bits` = `false`, and
/// `decode_padding_mode = DecodePaddingMode::RequireCanonicalPadding`.
///
/// This probably matches most people's expectations, but consider disabling padding to save
/// a few bytes unless you specifically need it for compatibility with some legacy system.
pub const fn new() -> Self {
Self {
// RFC states that padding must be applied by default
encode_padding: true,
decode_allow_trailing_bits: false,
decode_padding_mode: DecodePaddingMode::RequireCanonical,
}
}
/// Create a new config based on `self` with an updated `padding` setting.
///
/// If `padding` is `true`, encoding will append either 1 or 2 `=` padding characters as needed
/// to produce an output whose length is a multiple of 4.
///
/// Padding is not needed for correct decoding and only serves to waste bytes, but it's in the
/// [spec](https://datatracker.ietf.org/doc/html/rfc4648#section-3.2).
///
/// For new applications, consider not using padding if the decoders you're using don't require
/// padding to be present.
pub const fn with_encode_padding(self, padding: bool) -> Self {
Self {
encode_padding: padding,
..self
}
}
/// Create a new config based on `self` with an updated `decode_allow_trailing_bits` setting.
///
/// Most users will not need to configure this. It's useful if you need to decode base64
/// produced by a buggy encoder that has bits set in the unused space on the last base64
/// character as per [forgiving-base64 decode](https://infra.spec.whatwg.org/#forgiving-base64-decode).
/// If invalid trailing bits are present and this is `true`, those bits will
/// be silently ignored, else `DecodeError::InvalidLastSymbol` will be emitted.
pub const fn with_decode_allow_trailing_bits(self, allow: bool) -> Self {
Self {
decode_allow_trailing_bits: allow,
..self
}
}
/// Create a new config based on `self` with an updated `decode_padding_mode` setting.
///
/// Padding is not useful in terms of representing encoded data -- it makes no difference to
/// the decoder if padding is present or not, so if you have some un-padded input to decode, it
/// is perfectly fine to use `DecodePaddingMode::Indifferent` to prevent errors from being
/// emitted.
///
/// However, since in practice
/// [people who learned nothing from BER vs DER seem to expect base64 to have one canonical encoding](https://eprint.iacr.org/2022/361),
/// the default setting is the stricter `DecodePaddingMode::RequireCanonicalPadding`.
///
/// Or, if "canonical" in your circumstance means _no_ padding rather than padding to the
/// next multiple of four, there's `DecodePaddingMode::RequireNoPadding`.
pub const fn with_decode_padding_mode(self, mode: DecodePaddingMode) -> Self {
Self {
decode_padding_mode: mode,
..self
}
}
}
impl Default for GeneralPurposeConfig {
/// Delegates to [GeneralPurposeConfig::new].
fn default() -> Self {
Self::new()
}
}
impl Config for GeneralPurposeConfig {
fn encode_padding(&self) -> bool {
self.encode_padding
}
}
/// A [GeneralPurpose] engine using the [alphabet::STANDARD] base64 alphabet and [PAD] config.
pub const STANDARD: GeneralPurpose = GeneralPurpose::new(&alphabet::STANDARD, PAD);
/// A [GeneralPurpose] engine using the [alphabet::STANDARD] base64 alphabet and [NO_PAD] config.
pub const STANDARD_NO_PAD: GeneralPurpose = GeneralPurpose::new(&alphabet::STANDARD, NO_PAD);
/// A [GeneralPurpose] engine using the [alphabet::URL_SAFE] base64 alphabet and [PAD] config.
pub const URL_SAFE: GeneralPurpose = GeneralPurpose::new(&alphabet::URL_SAFE, PAD);
/// A [GeneralPurpose] engine using the [alphabet::URL_SAFE] base64 alphabet and [NO_PAD] config.
pub const URL_SAFE_NO_PAD: GeneralPurpose = GeneralPurpose::new(&alphabet::URL_SAFE, NO_PAD);
/// Include padding bytes when encoding, and require that they be present when decoding.
///
/// This is the standard per the base64 RFC, but consider using [NO_PAD] instead as padding serves
/// little purpose in practice.
pub const PAD: GeneralPurposeConfig = GeneralPurposeConfig::new();
/// Don't add padding when encoding, and require no padding when decoding.
pub const NO_PAD: GeneralPurposeConfig = GeneralPurposeConfig::new()
.with_encode_padding(false)
.with_decode_padding_mode(DecodePaddingMode::RequireNone);