1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
//! Accessing existing DNS messages.
//!
//! This module defines a number of types for processing the content of a DNS
//! message in wire format. Because many components of the message are of
//! varying length, this can only be done iteratively. The type [`Message`]
//! wraps an octets sequence containing a complete message. It provides access
//! to the four sections of the message via additional types.
//!
//! For details, see the [`Message`] type.
//!
//! [`Message`]: struct.Message.html

use super::header::{Header, HeaderCounts, HeaderSection};
use super::iana::{Class, Rcode, Rtype};
use super::message_builder::{AdditionalBuilder, AnswerBuilder, PushError};
use super::name::ParsedDname;
use super::opt::{Opt, OptRecord};
use super::question::Question;
use super::rdata::ParseRecordData;
use super::record::{ComposeRecord, ParsedRecord, Record};
use super::wire::{Composer, ParseError};
use crate::rdata::rfc1035::Cname;
use core::marker::PhantomData;
use core::{fmt, mem};
use octseq::{Octets, OctetsFrom, Parser};

//------------ Message -------------------------------------------------------

/// A DNS message.
///
/// This type wraps an octets sequence containing the complete wire-format DNS
/// message and allows access to the various components of the message.
///
/// You create a message by passing an octets sequence to the [`from_octets`]
/// associate function which does some basic sanity checks and, if they
/// succeed, returns a message for the sequence. All further parsing happens
/// lazily when you access more of the message. This means that a message is
/// not necessarily well-formatted and further parsing may fail later on.
///
/// Section 4 of [RFC 1035] defines DNS messages as being divded into five
/// sections named header, question, answer, authority, and additional.
///
/// The header section is of a fixed sized and can be accessed at any time
/// through the methods given under [Header Section]. Most likely, you will
/// be interested in the first part of the header which is
/// returned by the [`header`] method.  The second part of the header
/// section contains the number of entries in the following four sections
/// and is of less interest as there are more sophisticated ways of accessing
/// these sections. If you do care, you can get access through
/// [`header_counts`].
///
/// The meaning of the next four sections depends on the type of message as
/// described by the [opcode] field of the header. Since the most common
/// type is a query, the sections are named after their function in this type
/// and the following description will focus on it.
///
/// The question section contains what was asked of the DNS by a query. It
/// contains a number of questions that consist of a domain name, a record
/// type, and class. A query asks for all records of the given record type
/// that are owned by the domain name within the class. In queries, there will
/// be exactly one question. With other opcodes, there may be multiple
/// questions.
///
/// You can acquire an iterator over the questions through the [`question`]
/// method. It returns a [`QuestionSection`] value that is an iterator over
/// questions. Since a single question is such a common case, there is a
/// convenience method [`first_question`] that returns the first question
/// only.
///
/// The following three section all contain DNS resource records. In
/// queries, they are empty in a request and may or may not contain records
/// in a response. The *answer* section contains all the records that answer
/// the given question. The *authority* section contains records declaring
/// which name server provided authoritative information for the question,
/// and the *additional* section can contain records that the name server
/// thought might be useful for processing the question. For instance, if you
/// trying to find out the mail server of a domain by asking for MX records,
/// you likely also want the IP addresses for the server, so the name server
/// may include these right away and free of charge.
///
/// There are functions to access all three sections directly: [`answer`],
/// [`authority`], and [`additional`]. Each method returns a value of type
/// [RecordSection] which acts as an iterator over the records in the
/// section. Since there are no pointers to where the later sections start,
/// accessing them directly means iterating over the previous sections. This
/// is why it is more efficitent to call [`RecordSection::next_section`] to
/// progress to a later section. Alternatively, you can use the message’s
/// [`sections`] method that gives you all four sections at once with the
/// minimal amount of iterating necessary.
///
/// When iterating over the record section, you will receive values of type
/// [`ParsedRecord`], an intermediary type that only parsed the parts common
/// to all records. In order to access the data of the record, you will want
/// to convert it into a [`Record`] which is generic over the actual record
/// type data. This can be done via [`ParsedRecord::into_record`].
///
/// Alternatively, you can trade the record section for one that only returns
/// the types you are interested in via the [`RecordSection::limit_to`]
/// method. The iterator returned by that method will quietly skip over all
/// records that aren’t of the type you are interested in.
///
/// So, if you want to iterate over the MX records in the answer section, you
/// would do something like this:
///
/// ```
/// use domain::base::Message;
/// use domain::rdata::Mx;
///
/// # let octets = vec![0; 12];
/// let msg = Message::from_octets(octets).unwrap();
/// for record in msg.answer().unwrap().limit_to::<Mx<_>>() {
///     if let Ok(record) = record {
///         // Do something with the record ...
///     }
/// }
/// ```
///
/// The `limit_to` method takes the record type as a type argument. Many
/// record types, like [`Mx`], are generic over octet sequences but the
/// compiler generally can figure out the concrete type itself, so in most
/// cases you get away with the underscore there.
///
/// Note how the iterator doesn’t actually return records but results of
/// records and parse errors. This is because only now can it check whether
/// the record is actually properly formatted. An error signals that something
/// went wrong while parsing. If only the record data is broken, the message
/// remains useful and parsing can continue with the next record. If the
/// message is fully broken, the next iteration will return `None` to signal
/// that.
///
/// [`additional`]: #method.additional
/// [`answer`]: #method.answer
/// [`authority`]: #method.authority
/// [`first_question`]: #method.first_question
/// [`from_octets`]: #method.from_octets
/// [`header`]: #method.header
/// [`header_counts`]: #method.header_counts
/// [`question`]: #method.question
/// [`sections`]: #method.sections
/// [`Mx`]: ../../rdata/rfc1035/struct.Mx.html
/// [`ParsedRecord`]: ../record/struct.ParsedRecord.html
/// [`ParsedRecord::into_record`]: ../record/struct.ParsedRecord.html#method.into_record
/// [`QuestionSection`]: struct.QuestionSection.html
/// [`Record`]: ../record/struct.Record.html
/// [`RecordSection`]: struct.RecordSection.html
/// [`RecordSection::limit_to`]: ../struct.RecordSection.html#method.limit_to
/// [`RecordSection::next_section`]: ../struct.RecordSection.html#method.next_section
/// [Header Section]: #header-section
/// [rdata]: ../../rdata/index.html
/// [opcode]: ../iana/opcode/enum.Opcode.html
/// [RFC 1035]: https://tools.ietf.org/html/rfc1035
#[derive(Clone, Copy)]
pub struct Message<Octs: ?Sized> {
    octets: Octs,
}

/// # Creation and Conversion
///
impl<Octs> Message<Octs> {
    /// Creates a message from an octets sequence.
    ///
    /// This fails if the slice is too short to even contain a complete
    /// header section.  No further checks are done, though, so if this
    /// function returns ok, the message may still be broken with other
    /// methods returning errors later one.
    pub fn from_octets(octets: Octs) -> Result<Self, ShortMessage>
    where
        Octs: AsRef<[u8]>,
    {
        Message::check_slice(octets.as_ref())?;
        Ok(unsafe { Self::from_octets_unchecked(octets) })
    }

    /// Creates a message from a bytes value without checking.
    ///
    /// # Safety
    ///
    /// The methods for header access rely on the octets being at least as
    /// long as a header. If the sequence is shorter, the behavior is
    /// undefined.
    pub(super) unsafe fn from_octets_unchecked(octets: Octs) -> Self {
        Message { octets }
    }
}

impl Message<[u8]> {
    /// Creates a message from an octets slice.
    ///
    /// This fails if the slice is too short to even contain a complete
    /// header section.  No further checks are done, though, so if this
    /// function returns ok, the message may still be broken with other
    /// methods returning errors later one.
    pub fn from_slice(slice: &[u8]) -> Result<&Self, ShortMessage> {
        Message::check_slice(slice)?;
        Ok(unsafe { Self::from_slice_unchecked(slice) })
    }

    /// Creates a message from a bytes value without checking.
    ///
    /// # Safety
    ///
    /// The methods for header access rely on the octets being at least as
    /// long as a header. If the sequence is shorter, the behavior is
    /// undefined.
    unsafe fn from_slice_unchecked(slice: &[u8]) -> &Self {
        &*(slice as *const [u8] as *const Self)
    }

    /// Checks that the slice can be used for a message.
    fn check_slice(slice: &[u8]) -> Result<(), ShortMessage> {
        if slice.len() < mem::size_of::<HeaderSection>() {
            Err(ShortMessage(()))
        } else {
            Ok(())
        }
    }
}

impl<Octs: ?Sized> Message<Octs> {
    /// Returns a reference to the underlying octets sequence.
    pub fn as_octets(&self) -> &Octs {
        &self.octets
    }

    /// Converts the message into the underlying octets sequence.
    pub fn into_octets(self) -> Octs
    where
        Octs: Sized,
    {
        self.octets
    }

    /// Returns a slice to the underlying octets sequence.
    pub fn as_slice(&self) -> &[u8]
    where
        Octs: AsRef<[u8]>,
    {
        self.octets.as_ref()
    }

    /// Returns a mutable slice to the underlying octets sequence.
    ///
    /// Because it is possible to utterly break the message using this slice,
    /// the method is private.
    fn as_slice_mut(&mut self) -> &mut [u8]
    where
        Octs: AsMut<[u8]>,
    {
        self.octets.as_mut()
    }

    /// Returns a message for a slice of the octets sequence.
    pub fn for_slice(&self) -> &Message<[u8]>
    where
        Octs: AsRef<[u8]>,
    {
        unsafe { Message::from_slice_unchecked(self.octets.as_ref()) }
    }
}

/// # Header Section
///
impl<Octs: AsRef<[u8]> + ?Sized> Message<Octs> {
    /// Returns the message header.
    pub fn header(&self) -> Header {
        *Header::for_message_slice(self.as_slice())
    }

    /// Returns a mutable reference to the message header.
    pub fn header_mut(&mut self) -> &mut Header
    where
        Octs: AsMut<[u8]>,
    {
        Header::for_message_slice_mut(self.as_slice_mut())
    }

    /// Returns the header counts of the message.
    pub fn header_counts(&self) -> HeaderCounts {
        *HeaderCounts::for_message_slice(self.as_slice())
    }

    /// Returns the entire header section.
    pub fn header_section(&self) -> HeaderSection {
        *HeaderSection::for_message_slice(self.as_slice())
    }

    /// Returns whether the rcode of the header is NoError.
    pub fn no_error(&self) -> bool {
        self.header().rcode() == Rcode::NoError
    }

    /// Returns whether the rcode of the header is one of the error values.
    pub fn is_error(&self) -> bool {
        self.header().rcode() != Rcode::NoError
    }
}

/// # Access to Sections
///
impl<Octs: Octets + ?Sized> Message<Octs> {
    /// Returns the question section.
    pub fn question(&self) -> QuestionSection<'_, Octs> {
        QuestionSection::new(&self.octets)
    }

    /// Returns the zone section of an UPDATE message.
    ///
    /// This is identical to `self.question()`.
    pub fn zone(&self) -> QuestionSection<'_, Octs> {
        self.question()
    }

    /// Returns the answer section.
    ///
    /// Iterates over the question section in order to access the answer
    /// section. If you are accessing the question section anyway, using
    /// its [`next_section`] method may be more efficient.
    ///
    /// [`next_section`]: ../struct.QuestionSection.html#method.next_section
    pub fn answer(&self) -> Result<RecordSection<'_, Octs>, ParseError> {
        self.question().next_section()
    }

    /// Returns the prerequisite section of an UPDATE message.
    ///
    /// This is identical to `self.answer()`.
    pub fn prerequisite(
        &self,
    ) -> Result<RecordSection<'_, Octs>, ParseError> {
        self.answer()
    }

    /// Returns the authority section.
    ///
    /// Iterates over both the question and the answer sections to determine
    /// the start of the authority section. If you are already accessing the
    /// answer section, using [`next_section`] on it is more efficient.
    ///
    /// [`next_section`]: ../struct.RecordSection.html#method.next_section
    pub fn authority(&self) -> Result<RecordSection<'_, Octs>, ParseError> {
        Ok(self.answer()?.next_section()?.unwrap())
    }

    /// Returns the update section of an UPDATE message.
    ///
    /// This is identical to `self.authority()`.
    pub fn update(&self) -> Result<RecordSection<'_, Octs>, ParseError> {
        self.authority()
    }

    /// Returns the additional section.
    ///
    /// Iterates over all three previous sections to determine the start of
    /// the additional section. If you are already accessing the
    /// authority section, using [`next_section`] on it is more efficient.
    ///
    /// [`next_section`]: ../struct.RecordSection.html#method.next_section
    pub fn additional(&self) -> Result<RecordSection<'_, Octs>, ParseError> {
        Ok(self.authority()?.next_section()?.unwrap())
    }

    /// Returns all four sections in one fell swoop.
    #[allow(clippy::type_complexity)]
    pub fn sections(
        &self,
    ) -> Result<
        (
            QuestionSection<'_, Octs>,
            RecordSection<'_, Octs>,
            RecordSection<'_, Octs>,
            RecordSection<'_, Octs>,
        ),
        ParseError,
    > {
        let question = self.question();
        let answer = question.next_section()?;
        let authority = answer.next_section()?.unwrap();
        let additional = authority.next_section()?.unwrap();
        Ok((question, answer, authority, additional))
    }

    /// Returns an iterator over the records in the message.
    ///
    /// The iterator’s item is a pair of a [`ParsedRecord`] and the
    /// [`Section`] it was found in.
    ///
    /// As is customary, this iterator is also accessible via the
    /// `IntoIterator` trait on a reference to the message.
    ///
    /// [`ParsedRecord`]: ../record/struct.ParsedRecord.html
    /// [`Section`]: enum.Section.html
    pub fn iter(&self) -> MessageIter<'_, Octs> {
        self.into_iter()
    }
}

/// # Helpers for Common Tasks
///
impl<Octs: Octets + ?Sized> Message<Octs> {
    /// Returns whether this is the answer to some other message.
    ///
    /// The method checks whether the ID fields of the headers are the same,
    /// whether the QR flag is set in this message, and whether the questions
    /// are the same.
    pub fn is_answer<Other: Octets>(&self, query: &Message<Other>) -> bool {
        if !self.header().qr()
            || self.header().id() != query.header().id()
            || self.header_counts().qdcount()
                != query.header_counts().qdcount()
        {
            false
        } else {
            self.question() == query.question()
        }
    }

    /// Returns the first question, if there is any.
    ///
    /// The method will return `None` both if there are no questions or if
    /// parsing fails.
    pub fn first_question(
        &self,
    ) -> Option<Question<ParsedDname<Octs::Range<'_>>>> {
        match self.question().next() {
            None | Some(Err(..)) => None,
            Some(Ok(question)) => Some(question),
        }
    }

    /// Returns the sole question of the message.
    ///
    /// This is like [`first_question`] but returns an error if there isn’t
    /// exactly one question or there is a parse error.
    ///
    /// [`first_question`]: #method.first_question
    pub fn sole_question(
        &self,
    ) -> Result<Question<ParsedDname<Octs::Range<'_>>>, ParseError> {
        match self.header_counts().qdcount() {
            0 => return Err(ParseError::form_error("no question")),
            1 => {}
            _ => return Err(ParseError::form_error("multiple questions")),
        }
        self.question().next().unwrap()
    }

    /// Returns the query type of the first question, if any.
    pub fn qtype(&self) -> Option<Rtype> {
        self.first_question().map(|x| x.qtype())
    }

    /// Returns whether the message contains answers of a given type.
    pub fn contains_answer<'s, Data>(&'s self) -> bool
    where
        Data: ParseRecordData<'s, Octs>,
    {
        let answer = match self.answer() {
            Ok(answer) => answer,
            Err(..) => return false,
        };
        answer.limit_to::<Data>().next().is_some()
    }

    /// Resolves the canonical name of the answer.
    ///
    /// The CNAME record allows a domain name to be an alias for a different
    /// name. Aliases may be chained. The ‘canonical name’ referred to be the
    /// method’s name is the last name in this chain. A recursive resolver
    /// will support a stub resolver in figuring out this canonical name by
    /// including all necessary CNAME records in its answer. This method can
    /// be used on such an answer to determine the canonical name. As such,
    /// it will only consider CNAMEs present in the message’s answer section.
    ///
    /// It starts with the question name and follows CNAME records until there
    /// is no next CNAME in the chain and then returns the last CNAME.
    ///
    /// If the message doesn’t have a question, if there is a parse error, or
    /// if there is a CNAME loop the method returns `None`.
    //
    //  Loop detection is done by breaking off after ANCOUNT + 1 steps -- if
    //  there is more steps then there is records in the answer section we
    //  must have a loop. While the ANCOUNT could be unreasonably large, the
    //  iterator would break off in this case and we break out with a None
    //  right away.
    pub fn canonical_name(&self) -> Option<ParsedDname<Octs::Range<'_>>> {
        let question = match self.first_question() {
            None => return None,
            Some(question) => question,
        };
        let mut name = question.into_qname();
        let answer = match self.answer() {
            Ok(answer) => answer.limit_to::<Cname<_>>(),
            Err(_) => return None,
        };

        for _ in 0..self.header_counts().ancount() + 1 {
            let mut found = false;
            for record in answer.clone() {
                let record = match record {
                    Ok(record) => record,
                    Err(_) => continue,
                };
                if *record.owner() == name {
                    name = record.into_data().into_cname();
                    found = true;
                    break;
                }
            }
            if !found {
                return Some(name);
            }
        }

        None
    }

    /// Returns the OPT record from the message, if there is one.
    pub fn opt(&self) -> Option<OptRecord<Octs::Range<'_>>> {
        match self.additional() {
            Ok(section) => match section.limit_to::<Opt<_>>().next() {
                Some(Ok(rr)) => Some(OptRecord::from(rr)),
                _ => None,
            },
            Err(_) => None,
        }
    }

    /// Returns the last additional record from the message.
    ///
    /// The method tries to parse the last record of the additional section
    /// as the provided record type. If that succeeds, it returns that
    /// parsed record.
    ///
    /// If the last record is of the wrong type or parsing fails, returns
    /// `None`.
    pub fn get_last_additional<'s, Data: ParseRecordData<'s, Octs>>(
        &'s self,
    ) -> Option<Record<ParsedDname<Octs::Range<'s>>, Data>> {
        let mut section = match self.additional() {
            Ok(section) => section,
            Err(_) => return None,
        };
        loop {
            match section.count {
                Err(_) => return None,
                Ok(0) => return None,
                Ok(1) => break,
                _ => {}
            }
            let _ = section.next();
        }
        let record = match ParsedRecord::parse(&mut section.parser) {
            Ok(record) => record,
            Err(_) => return None,
        };
        let record = match record.into_record() {
            Ok(Some(record)) => record,
            _ => return None,
        };
        Some(record)
    }

    /// Drops the last additional record from the message.
    ///
    /// Does so by decreasing the ’arcount.’ Does, however, not change the
    /// underlying octet sequence.
    ///
    /// # Panics
    ///
    /// The method panics if the additional section is empty.
    pub fn remove_last_additional(&mut self)
    where
        Octs: AsMut<[u8]>,
    {
        HeaderCounts::for_message_slice_mut(self.octets.as_mut())
            .dec_arcount();
    }

    /// Copy records from a message into the target message builder.
    ///
    /// The method uses `op` to process records from all record sections
    /// before inserting, caller can use this closure to filter or manipulate
    /// records before inserting.
    pub fn copy_records<'s, R, F, T, O>(
        &'s self,
        target: T,
        mut op: F,
    ) -> Result<AdditionalBuilder<O>, CopyRecordsError>
    where
        Octs: Octets,
        R: ComposeRecord + 's,
        F: FnMut(ParsedRecord<'s, Octs>) -> Option<R>,
        T: Into<AnswerBuilder<O>>,
        O: Composer,
    {
        let mut source = self.answer()?;
        let mut target = target.into();
        for rr in &mut source {
            let rr = rr?;
            if let Some(rr) = op(rr) {
                target.push(rr).map_err(CopyRecordsError::Push)?;
            }
        }

        let mut source = source.next_section()?.unwrap();
        let mut target = target.authority();
        for rr in &mut source {
            let rr = rr?;
            if let Some(rr) = op(rr) {
                target.push(rr).map_err(CopyRecordsError::Push)?;
            }
        }

        let source = source.next_section()?.unwrap();
        let mut target = target.additional();
        for rr in source {
            let rr = rr?;
            if let Some(rr) = op(rr) {
                target.push(rr).map_err(CopyRecordsError::Push)?;
            }
        }

        Ok(target)
    }
}

//--- AsRef

// Octs here can’t be ?Sized or it’ll conflict with AsRef<[u8]> below.
// But [u8] is covered by that impl anyway, so no harm done.
//
impl<Octs> AsRef<Octs> for Message<Octs> {
    fn as_ref(&self) -> &Octs {
        &self.octets
    }
}

impl<Octs: AsRef<[u8]> + ?Sized> AsRef<[u8]> for Message<Octs> {
    fn as_ref(&self) -> &[u8] {
        self.octets.as_ref()
    }
}

impl<Octs: AsRef<[u8]> + ?Sized> AsRef<Message<[u8]>> for Message<Octs> {
    fn as_ref(&self) -> &Message<[u8]> {
        unsafe { Message::from_slice_unchecked(self.octets.as_ref()) }
    }
}

//--- OctetsFrom

impl<Octs, SrcOcts> OctetsFrom<Message<SrcOcts>> for Message<Octs>
where
    Octs: OctetsFrom<SrcOcts>,
{
    type Error = Octs::Error;

    fn try_octets_from(
        source: Message<SrcOcts>,
    ) -> Result<Self, Self::Error> {
        Octs::try_octets_from(source.octets)
            .map(|octets| unsafe { Self::from_octets_unchecked(octets) })
    }
}

//--- IntoIterator

impl<'a, Octs: Octets + ?Sized> IntoIterator for &'a Message<Octs> {
    type Item = Result<(ParsedRecord<'a, Octs>, Section), ParseError>;
    type IntoIter = MessageIter<'a, Octs>;

    fn into_iter(self) -> Self::IntoIter {
        MessageIter {
            inner: self.answer().ok(),
        }
    }
}

//--- Debug

impl<Octs: AsRef<[u8]> + ?Sized> fmt::Debug for Message<Octs> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Message")
            .field("id", &self.header().id())
            .field("qr", &self.header().qr())
            .field("opcode", &self.header().opcode())
            .field("flags", &self.header().flags())
            .field("rcode", &self.header().rcode())
            .field("qdcount", &self.header_counts().qdcount())
            .field("ancount", &self.header_counts().ancount())
            .field("nscount", &self.header_counts().nscount())
            .field("arcount", &self.header_counts().arcount())
            .finish()
    }
}

//------------ QuestionSection ----------------------------------------------

/// An iterator over the question section of a DNS message.
///
/// The iterator’s item is the result of trying to parse the question. In case
/// of a parse error, `next` will return an error once and `None` after that.
///
/// You can create a value of this type through [`Message::question`]. Use the
/// [`answer`] or [`next_section`] methods on a question section to proceed
/// to an iterator over the answer section.
///
/// [`Message::question`]: struct.Message.html#method.question
/// [`answer`]: #method.answer
/// [`next_section`]: #method.next_section
#[derive(Debug)]
pub struct QuestionSection<'a, Octs: ?Sized> {
    /// The parser for generating the questions.
    parser: Parser<'a, Octs>,

    /// The remaining number of questions.
    ///
    /// The `Result` is here to monitor an error during iteration.
    /// It is used to fuse the iterator after an error and is also returned
    /// by `answer()` should that be called after an error.
    count: Result<u16, ParseError>,
}

impl<'a, Octs: Octets + ?Sized> QuestionSection<'a, Octs> {
    /// Creates a new question section from a reference to the message octets.
    fn new(octets: &'a Octs) -> Self {
        let mut parser = Parser::from_ref(octets);
        parser.advance(mem::size_of::<HeaderSection>()).unwrap();
        QuestionSection {
            count: Ok(
                HeaderCounts::for_message_slice(parser.as_slice()).qdcount()
            ),
            parser,
        }
    }

    /// Returns the current position relative to the beginning of the message.
    #[must_use]
    pub fn pos(&self) -> usize {
        self.parser.pos()
    }

    /// Proceeds to the answer section.
    ///
    /// Skips over any remaining questions and then converts itself into the
    /// first [`RecordSection`].
    ///
    /// [`RecordSection`]: struct.RecordSection.html
    pub fn answer(mut self) -> Result<RecordSection<'a, Octs>, ParseError> {
        while self.next().is_some() {}
        let _ = self.count?;
        Ok(RecordSection::new(self.parser, Section::first()))
    }

    /// Proceeds to the answer section.
    ///
    /// This is identical to [`answer`][Self::answer] and is here for
    /// consistency.
    pub fn next_section(self) -> Result<RecordSection<'a, Octs>, ParseError> {
        self.answer()
    }
}

//--- Clone and Clone

impl<'a, Octs: ?Sized> Clone for QuestionSection<'a, Octs> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<'a, Octs: ?Sized> Copy for QuestionSection<'a, Octs> {}

//--- Iterator

impl<'a, Octs: Octets + ?Sized> Iterator for QuestionSection<'a, Octs> {
    type Item = Result<Question<ParsedDname<Octs::Range<'a>>>, ParseError>;

    fn next(&mut self) -> Option<Self::Item> {
        match self.count {
            Ok(count) if count > 0 => match Question::parse(&mut self.parser)
            {
                Ok(question) => {
                    self.count = Ok(count - 1);
                    Some(Ok(question))
                }
                Err(err) => {
                    self.count = Err(err);
                    Some(Err(err))
                }
            },
            _ => None,
        }
    }
}

//--- PartialEq

impl<'a, 'o, Octs, Other> PartialEq<QuestionSection<'o, Other>>
    for QuestionSection<'a, Octs>
where
    Octs: Octets + ?Sized,
    Other: Octets + ?Sized,
{
    fn eq(&self, other: &QuestionSection<'o, Other>) -> bool {
        let mut me = *self;
        let mut other = *other;
        loop {
            match (me.next(), other.next()) {
                (Some(Ok(left)), Some(Ok(right))) => {
                    if left != right {
                        return false;
                    }
                }
                (None, None) => return true,
                _ => return false,
            }
        }
    }
}

//------------ Section -------------------------------------------------------

/// A helper type enumerating the three kinds of record sections.
///
/// See the documentation of [`Message`] for what the three sections are.
///
/// [`Message`]: struct.Message.html
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd)]
pub enum Section {
    Answer,
    Authority,
    Additional,
}

impl Section {
    /// Returns the first section.
    #[must_use]
    pub fn first() -> Self {
        Section::Answer
    }

    /// Returns the correct record count for this section.
    fn count(self, counts: HeaderCounts) -> u16 {
        match self {
            Section::Answer => counts.ancount(),
            Section::Authority => counts.nscount(),
            Section::Additional => counts.arcount(),
        }
    }

    /// Returns the value for the following section or `None` if this is last.
    pub(crate) fn next_section(self) -> Option<Self> {
        match self {
            Section::Answer => Some(Section::Authority),
            Section::Authority => Some(Section::Additional),
            Section::Additional => None,
        }
    }
}

//------------ RecordSection -----------------------------------------------

/// An iterator over the records in one of the three record sections.
///
/// The iterator’s item is the result of parsing a raw record represented by
/// [`ParsedRecord`]. This type will allow access to an unparsed record. It
/// can be converted into a concrete [`Record`] via its [`into_record`]
/// method. If parsing the raw record fails, the iterator will return an
/// error once and `None` after that.
///
/// Alternatively, you can trade in a value of this type into a
/// [`RecordIter`] that iterates over [`Record`]s of a specific type by
/// calling the [`limit_to`] method. In particular, you can use this together
/// with [`AllRecordData`] to acquire an iterator that parses all known
/// record types.
///
/// `RecordSection` values cannot be created directly. You can get one either
/// by calling the method for the section in question of a [`Message`] value
/// or by proceeding from another section via its `next_section` method.
///
/// [`limit_to`]: #method.limit_to
/// [`AllRecordData`]: ../../rdata/enum.AllRecordData.html
/// [`Message`]: struct.Message.html
/// [`ParseRecord`]: ../record/struct.ParsedRecord.html
/// [`Record`]: ../record/struct.Record.html
/// [`RecordIter`]: struct.RecordIter.html
/// [`into_record`]: ../record/struct.ParsedRecord.html#method.into_record
#[derive(Debug)]
pub struct RecordSection<'a, Octs: ?Sized> {
    /// The parser for generating the records.
    parser: Parser<'a, Octs>,

    /// Which section are we, really?
    section: Section,

    /// The remaining number of records.
    ///
    /// The `Result` is here to monitor an error during iteration.
    /// It is used to fuse the iterator after an error and is also returned
    /// by `answer()` should that be called after an error.
    count: Result<u16, ParseError>,
}

impl<'a, Octs: Octets + ?Sized> RecordSection<'a, Octs> {
    /// Creates a new section from a parser.
    ///
    /// The parser must be positioned at the beginning of this section.
    fn new(parser: Parser<'a, Octs>, section: Section) -> Self {
        RecordSection {
            count: Ok(section
                .count(*HeaderCounts::for_message_slice(parser.as_slice()))),
            section,
            parser,
        }
    }

    /// Returns the current position relative to the beginning of the message.
    #[must_use]
    pub fn pos(&self) -> usize {
        self.parser.pos()
    }

    /// Trades `self` in for an iterator limited to a concrete record type.
    ///
    /// The record type is given through its record data type. Since the data
    /// is being parsed, this type must implement [`ParseRecordData`]. For
    /// record data types that are generic over domain name types, this is
    /// normally achieved by giving them a [`ParsedDname`]. As a convenience,
    /// type aliases for all the fundamental record data types exist in the
    /// [domain::rdata::parsed] module.
    ///
    /// The returned limited iterator will continue at the current position
    /// of `self`. It will *not* start from the beginning of the section.
    ///
    /// [`ParseRecordData`]: ../rdata/trait.ParseRecordData.html
    /// [`ParsedDname`]: ../name/struct.ParsedDname.html
    /// [domain::rdata::parsed]: ../../rdata/parsed/index.html
    #[must_use]
    pub fn limit_to<Data: ParseRecordData<'a, Octs>>(
        self,
    ) -> RecordIter<'a, Octs, Data> {
        RecordIter::new(self, false)
    }

    /// Trades `self` in for an iterator limited to a type in IN class.
    ///
    /// Behaves exactly like [`limit_to`] but skips over records that are not
    /// of class IN.
    ///
    /// [`limit_to`]: #method.limit_to
    #[must_use]
    pub fn limit_to_in<Data: ParseRecordData<'a, Octs>>(
        self,
    ) -> RecordIter<'a, Octs, Data> {
        RecordIter::new(self, true)
    }

    /// Proceeds to the next section if there is one.
    ///
    /// Returns an error if parsing has failed and the message is unusable
    /// now.
    pub fn next_section(mut self) -> Result<Option<Self>, ParseError> {
        let section = match self.section.next_section() {
            Some(section) => section,
            None => return Ok(None),
        };
        while self.skip_next().is_some() {}
        let _ = self.count?;
        Ok(Some(RecordSection::new(self.parser, section)))
    }

    /// Skip the next record.
    fn skip_next(&mut self) -> Option<Result<(), ParseError>> {
        match self.count {
            Ok(count) if count > 0 => {
                match ParsedRecord::skip(&mut self.parser) {
                    Ok(_) => {
                        self.count = Ok(count - 1);
                        Some(Ok(()))
                    }
                    Err(err) => {
                        self.count = Err(err);
                        Some(Err(err))
                    }
                }
            }
            _ => None,
        }
    }
}

//--- Clone and Copy

impl<'a, Octs: ?Sized> Clone for RecordSection<'a, Octs> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<'a, Octs: ?Sized> Copy for RecordSection<'a, Octs> {}

//--- Iterator

impl<'a, Octs: Octets + ?Sized> Iterator for RecordSection<'a, Octs> {
    type Item = Result<ParsedRecord<'a, Octs>, ParseError>;

    fn next(&mut self) -> Option<Self::Item> {
        match self.count {
            Ok(count) if count > 0 => {
                match ParsedRecord::parse(&mut self.parser) {
                    Ok(record) => {
                        self.count = Ok(count - 1);
                        Some(Ok(record))
                    }
                    Err(err) => {
                        self.count = Err(err);
                        Some(Err(err))
                    }
                }
            }
            _ => None,
        }
    }
}

//------------ MessageIter ---------------------------------------------------

/// An iterator over the records of a message.
pub struct MessageIter<'a, Octs: ?Sized> {
    inner: Option<RecordSection<'a, Octs>>,
}

impl<'a, Octs: Octets + ?Sized> Iterator for MessageIter<'a, Octs> {
    type Item = Result<(ParsedRecord<'a, Octs>, Section), ParseError>;

    fn next(&mut self) -> Option<Self::Item> {
        // Try to get next record from current section
        match self.inner {
            Some(ref mut inner) => {
                let item = inner.next();
                if let Some(item) = item {
                    return Some(item.map(|item| (item, inner.section)));
                }
            }
            None => return None,
        }

        // Advance to next section if possible, and retry
        let inner = self.inner.take()?;
        match inner.next_section() {
            Ok(section) => {
                self.inner = section;
                self.next()
            }
            Err(err) => Some(Err(err)),
        }
    }
}

//------------ RecordIter ----------------------------------------------------

/// An iterator over specific records of a record section of a DNS message.
///
/// The iterator’s item type is the result of trying to parse a record.
/// It silently skips over all records that `Data` cannot or does not want to
/// parse. If parsing the record data fails, the iterator will return an
/// error but can continue with the next record. If parsing the entire record
/// fails the item will be an error and subsequent attempts to continue will
/// also produce errors. This case can be distinguished from an error while
/// parsing the record data by [`next_section`] returning an error, too.
///
/// You can create a value of this type through the
/// [`RecordSection::limit_to`] method.
///
/// [`next_section`]: #method.next_section
/// [`RecordSection::limit_to`]: struct.RecordSection.html#method.limit_to
#[derive(Debug)]
pub struct RecordIter<'a, Octs: ?Sized, Data> {
    section: RecordSection<'a, Octs>,
    in_only: bool,
    marker: PhantomData<Data>,
}

impl<'a, Octs, Data> RecordIter<'a, Octs, Data>
where
    Octs: Octets + ?Sized,
    Data: ParseRecordData<'a, Octs>,
{
    /// Creates a new record iterator.
    fn new(section: RecordSection<'a, Octs>, in_only: bool) -> Self {
        RecordIter {
            section,
            in_only,
            marker: PhantomData,
        }
    }

    /// Trades the limited iterator for the full iterator.
    ///
    /// The returned iterator will continue right after the last record
    /// previously returned.
    #[must_use]
    pub fn unwrap(self) -> RecordSection<'a, Octs> {
        self.section
    }

    /// Proceeds to the next section if there is one.
    ///
    /// Returns an error if parsing the message has failed. Returns
    /// `Ok(None)` if this iterator was already on the additional section.
    pub fn next_section(
        self,
    ) -> Result<Option<RecordSection<'a, Octs>>, ParseError> {
        self.section.next_section()
    }
}

//--- Clone

impl<'a, Octs: ?Sized, Data> Clone for RecordIter<'a, Octs, Data> {
    fn clone(&self) -> Self {
        RecordIter {
            section: self.section,
            in_only: self.in_only,
            marker: PhantomData,
        }
    }
}

//--- Iterator

impl<'a, Octs, Data> Iterator for RecordIter<'a, Octs, Data>
where
    Octs: Octets + ?Sized,
    Data: ParseRecordData<'a, Octs>,
{
    type Item =
        Result<Record<ParsedDname<Octs::Range<'a>>, Data>, ParseError>;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            let record = match self.section.next() {
                Some(Ok(record)) => record,
                Some(Err(err)) => return Some(Err(err)),
                None => return None,
            };
            if self.in_only && record.class() != Class::In {
                continue;
            }
            match record.into_record() {
                Ok(Some(record)) => return Some(Ok(record)),
                Err(err) => return Some(Err(err)),
                Ok(None) => {}
            }
        }
    }
}

//============ Error Types ===================================================

//------------ ShortMessage --------------------------------------------------

/// A message was too short to even contain the header.
#[derive(Clone, Copy, Debug)]
pub struct ShortMessage(());

impl fmt::Display for ShortMessage {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str("short message")
    }
}

#[cfg(feature = "std")]
impl std::error::Error for ShortMessage {}

//------------ CopyRecordsError ----------------------------------------------

/// An error occurrd while copying records.
#[derive(Clone, Copy, Debug)]
pub enum CopyRecordsError {
    /// Parsing the source message failed.
    Parse(ParseError),

    /// Not enough space in the target.
    Push(PushError),
}

//--- From

impl From<ParseError> for CopyRecordsError {
    fn from(err: ParseError) -> Self {
        CopyRecordsError::Parse(err)
    }
}

//--- Display and Error

impl fmt::Display for CopyRecordsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            CopyRecordsError::Parse(ref err) => err.fmt(f),
            CopyRecordsError::Push(ref err) => err.fmt(f),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for CopyRecordsError {}

//============ Testing =======================================================

#[cfg(test)]
mod test {
    use super::*;
    #[cfg(feature = "std")]
    use crate::base::message_builder::MessageBuilder;
    #[cfg(feature = "std")]
    use crate::base::name::Dname;
    #[cfg(feature = "std")]
    use crate::rdata::{AllRecordData, Ns};
    #[cfg(feature = "std")]
    use std::vec::Vec;

    // Helper for test cases
    #[cfg(feature = "std")]
    fn get_test_message() -> Message<Vec<u8>> {
        let msg = MessageBuilder::new_vec();
        let mut msg = msg.answer();
        msg.push((
            Dname::vec_from_str("foo.example.com.").unwrap(),
            86000,
            Cname::new(Dname::vec_from_str("baz.example.com.").unwrap()),
        ))
        .unwrap();
        let mut msg = msg.authority();
        msg.push((
            Dname::vec_from_str("bar.example.com.").unwrap(),
            86000,
            Ns::new(Dname::vec_from_str("baz.example.com.").unwrap()),
        ))
        .unwrap();
        msg.into_message()
    }

    #[test]
    fn short_message() {
        assert!(Message::from_octets(&[0u8; 11]).is_err());
        assert!(Message::from_octets(&[0u8; 12]).is_ok());
    }

    #[test]
    #[cfg(feature = "std")]
    fn canonical_name() {
        use crate::rdata::A;

        // Message without CNAMEs.
        let mut msg = MessageBuilder::new_vec().question();
        msg.push((Dname::vec_from_str("example.com.").unwrap(), Rtype::A))
            .unwrap();
        let msg_ref = msg.as_message();
        assert_eq!(
            Dname::vec_from_str("example.com.").unwrap(),
            msg_ref.canonical_name().unwrap()
        );

        // Message with CNAMEs.
        let mut msg = msg.answer();
        msg.push((
            Dname::vec_from_str("bar.example.com.").unwrap(),
            86000,
            Cname::new(Dname::vec_from_str("baz.example.com.").unwrap()),
        ))
        .unwrap();
        msg.push((
            Dname::vec_from_str("example.com.").unwrap(),
            86000,
            Cname::new(Dname::vec_from_str("foo.example.com.").unwrap()),
        ))
        .unwrap();
        msg.push((
            Dname::vec_from_str("foo.example.com.").unwrap(),
            86000,
            Cname::new(Dname::vec_from_str("bar.example.com.").unwrap()),
        ))
        .unwrap();
        let msg_ref = msg.as_message();
        assert_eq!(
            Dname::vec_from_str("baz.example.com.").unwrap(),
            msg_ref.canonical_name().unwrap()
        );

        // CNAME loop.
        msg.push((
            Dname::vec_from_str("baz.example.com").unwrap(),
            86000,
            Cname::new(Dname::vec_from_str("foo.example.com").unwrap()),
        ))
        .unwrap();
        assert!(msg.as_message().canonical_name().is_none());
        msg.push((
            Dname::vec_from_str("baz.example.com").unwrap(),
            86000,
            A::from_octets(127, 0, 0, 1),
        ))
        .unwrap();
        assert!(msg.as_message().canonical_name().is_none());
    }

    #[test]
    #[cfg(feature = "std")]
    fn message_iterator() {
        let msg = get_test_message();
        let mut iter = msg.iter();

        // Check that it returns a record from first section
        let (_rr, section) = iter.next().unwrap().unwrap();
        assert_eq!(Section::Answer, section);

        // Check that it advances to next section
        let (_rr, section) = iter.next().unwrap().unwrap();
        assert_eq!(Section::Authority, section);
    }

    #[test]
    #[cfg(feature = "std")]
    fn copy_records() {
        let msg = get_test_message();
        let target = MessageBuilder::new_vec().question();
        let res = msg.copy_records(target.answer(), |rr| {
            if let Ok(Some(rr)) =
                rr.into_record::<AllRecordData<_, ParsedDname<_>>>()
            {
                if rr.rtype() == Rtype::Cname {
                    return Some(rr);
                }
            }
            None
        });

        assert!(res.is_ok());
        if let Ok(target) = res {
            let msg = target.into_message();
            assert_eq!(1, msg.header_counts().ancount());
            assert_eq!(0, msg.header_counts().arcount());
        }
    }
}