1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
use crate::internals::ast::{Container, Data, Field, Style};
use crate::internals::attr::{Default, Identifier, TagType};
use crate::internals::{ungroup, Ctxt, Derive};
use syn::{Member, Type};

// Cross-cutting checks that require looking at more than a single attrs object.
// Simpler checks should happen when parsing and building the attrs.
pub fn check(cx: &Ctxt, cont: &mut Container, derive: Derive) {
    check_default_on_tuple(cx, cont);
    check_remote_generic(cx, cont);
    check_getter(cx, cont);
    check_flatten(cx, cont);
    check_identifier(cx, cont);
    check_variant_skip_attrs(cx, cont);
    check_internal_tag_field_name_conflict(cx, cont);
    check_adjacent_tag_conflict(cx, cont);
    check_transparent(cx, cont, derive);
    check_from_and_try_from(cx, cont);
}

// If some field of a tuple struct is marked #[serde(default)] then all fields
// after it must also be marked with that attribute, or the struct must have a
// container-level serde(default) attribute. A field's default value is only
// used for tuple fields if the sequence is exhausted at that point; that means
// all subsequent fields will fail to deserialize if they don't have their own
// default.
fn check_default_on_tuple(cx: &Ctxt, cont: &Container) {
    if let Default::None = cont.attrs.default() {
        if let Data::Struct(Style::Tuple, fields) = &cont.data {
            let mut first_default_index = None;
            for (i, field) in fields.iter().enumerate() {
                // Skipped fields automatically get the #[serde(default)]
                // attribute. We are interested only on non-skipped fields here.
                if field.attrs.skip_deserializing() {
                    continue;
                }
                if let Default::None = field.attrs.default() {
                    if let Some(first) = first_default_index {
                        cx.error_spanned_by(
                            field.ty,
                            format!("field must have #[serde(default)] because previous field {} has #[serde(default)]", first),
                        );
                    }
                    continue;
                }
                if first_default_index.is_none() {
                    first_default_index = Some(i);
                }
            }
        }
    }
}

// Remote derive definition type must have either all of the generics of the
// remote type:
//
//     #[serde(remote = "Generic")]
//     struct Generic<T> {…}
//
// or none of them, i.e. defining impls for one concrete instantiation of the
// remote type only:
//
//     #[serde(remote = "Generic<T>")]
//     struct ConcreteDef {…}
//
fn check_remote_generic(cx: &Ctxt, cont: &Container) {
    if let Some(remote) = cont.attrs.remote() {
        let local_has_generic = !cont.generics.params.is_empty();
        let remote_has_generic = !remote.segments.last().unwrap().arguments.is_none();
        if local_has_generic && remote_has_generic {
            cx.error_spanned_by(remote, "remove generic parameters from this path");
        }
    }
}

// Getters are only allowed inside structs (not enums) with the `remote`
// attribute.
fn check_getter(cx: &Ctxt, cont: &Container) {
    match cont.data {
        Data::Enum(_) => {
            if cont.data.has_getter() {
                cx.error_spanned_by(
                    cont.original,
                    "#[serde(getter = \"...\")] is not allowed in an enum",
                );
            }
        }
        Data::Struct(_, _) => {
            if cont.data.has_getter() && cont.attrs.remote().is_none() {
                cx.error_spanned_by(
                    cont.original,
                    "#[serde(getter = \"...\")] can only be used in structs that have #[serde(remote = \"...\")]",
                );
            }
        }
    }
}

// Flattening has some restrictions we can test.
fn check_flatten(cx: &Ctxt, cont: &Container) {
    match &cont.data {
        Data::Enum(variants) => {
            for variant in variants {
                for field in &variant.fields {
                    check_flatten_field(cx, variant.style, field);
                }
            }
        }
        Data::Struct(style, fields) => {
            for field in fields {
                check_flatten_field(cx, *style, field);
            }
        }
    }
}

fn check_flatten_field(cx: &Ctxt, style: Style, field: &Field) {
    if !field.attrs.flatten() {
        return;
    }
    match style {
        Style::Tuple => {
            cx.error_spanned_by(
                field.original,
                "#[serde(flatten)] cannot be used on tuple structs",
            );
        }
        Style::Newtype => {
            cx.error_spanned_by(
                field.original,
                "#[serde(flatten)] cannot be used on newtype structs",
            );
        }
        _ => {}
    }
}

// The `other` attribute must be used at most once and it must be the last
// variant of an enum.
//
// Inside a `variant_identifier` all variants must be unit variants. Inside a
// `field_identifier` all but possibly one variant must be unit variants. The
// last variant may be a newtype variant which is an implicit "other" case.
fn check_identifier(cx: &Ctxt, cont: &Container) {
    let variants = match &cont.data {
        Data::Enum(variants) => variants,
        Data::Struct(_, _) => return,
    };

    for (i, variant) in variants.iter().enumerate() {
        match (
            variant.style,
            cont.attrs.identifier(),
            variant.attrs.other(),
            cont.attrs.tag(),
        ) {
            // The `other` attribute may not be used in a variant_identifier.
            (_, Identifier::Variant, true, _) => {
                cx.error_spanned_by(
                    variant.original,
                    "#[serde(other)] may not be used on a variant identifier",
                );
            }

            // Variant with `other` attribute cannot appear in untagged enum
            (_, Identifier::No, true, &TagType::None) => {
                cx.error_spanned_by(
                    variant.original,
                    "#[serde(other)] cannot appear on untagged enum",
                );
            }

            // Variant with `other` attribute must be the last one.
            (Style::Unit, Identifier::Field, true, _) | (Style::Unit, Identifier::No, true, _) => {
                if i < variants.len() - 1 {
                    cx.error_spanned_by(
                        variant.original,
                        "#[serde(other)] must be on the last variant",
                    );
                }
            }

            // Variant with `other` attribute must be a unit variant.
            (_, Identifier::Field, true, _) | (_, Identifier::No, true, _) => {
                cx.error_spanned_by(
                    variant.original,
                    "#[serde(other)] must be on a unit variant",
                );
            }

            // Any sort of variant is allowed if this is not an identifier.
            (_, Identifier::No, false, _) => {}

            // Unit variant without `other` attribute is always fine.
            (Style::Unit, _, false, _) => {}

            // The last field is allowed to be a newtype catch-all.
            (Style::Newtype, Identifier::Field, false, _) => {
                if i < variants.len() - 1 {
                    cx.error_spanned_by(
                        variant.original,
                        format!("`{}` must be the last variant", variant.ident),
                    );
                }
            }

            (_, Identifier::Field, false, _) => {
                cx.error_spanned_by(
                    variant.original,
                    "#[serde(field_identifier)] may only contain unit variants",
                );
            }

            (_, Identifier::Variant, false, _) => {
                cx.error_spanned_by(
                    variant.original,
                    "#[serde(variant_identifier)] may only contain unit variants",
                );
            }
        }
    }
}

// Skip-(de)serializing attributes are not allowed on variants marked
// (de)serialize_with.
fn check_variant_skip_attrs(cx: &Ctxt, cont: &Container) {
    let variants = match &cont.data {
        Data::Enum(variants) => variants,
        Data::Struct(_, _) => return,
    };

    for variant in variants {
        if variant.attrs.serialize_with().is_some() {
            if variant.attrs.skip_serializing() {
                cx.error_spanned_by(
                    variant.original,
                    format!(
                        "variant `{}` cannot have both #[serde(serialize_with)] and #[serde(skip_serializing)]",
                        variant.ident
                    ),
                );
            }

            for field in &variant.fields {
                let member = member_message(&field.member);

                if field.attrs.skip_serializing() {
                    cx.error_spanned_by(
                        variant.original,
                        format!(
                            "variant `{}` cannot have both #[serde(serialize_with)] and a field {} marked with #[serde(skip_serializing)]",
                            variant.ident, member
                        ),
                    );
                }

                if field.attrs.skip_serializing_if().is_some() {
                    cx.error_spanned_by(
                        variant.original,
                        format!(
                            "variant `{}` cannot have both #[serde(serialize_with)] and a field {} marked with #[serde(skip_serializing_if)]",
                            variant.ident, member
                        ),
                    );
                }
            }
        }

        if variant.attrs.deserialize_with().is_some() {
            if variant.attrs.skip_deserializing() {
                cx.error_spanned_by(
                    variant.original,
                    format!(
                        "variant `{}` cannot have both #[serde(deserialize_with)] and #[serde(skip_deserializing)]",
                        variant.ident
                    ),
                );
            }

            for field in &variant.fields {
                if field.attrs.skip_deserializing() {
                    let member = member_message(&field.member);

                    cx.error_spanned_by(
                        variant.original,
                        format!(
                            "variant `{}` cannot have both #[serde(deserialize_with)] and a field {} marked with #[serde(skip_deserializing)]",
                            variant.ident, member
                        ),
                    );
                }
            }
        }
    }
}

// The tag of an internally-tagged struct variant must not be the same as either
// one of its fields, as this would result in duplicate keys in the serialized
// output and/or ambiguity in the to-be-deserialized input.
fn check_internal_tag_field_name_conflict(cx: &Ctxt, cont: &Container) {
    let variants = match &cont.data {
        Data::Enum(variants) => variants,
        Data::Struct(_, _) => return,
    };

    let tag = match cont.attrs.tag() {
        TagType::Internal { tag } => tag.as_str(),
        TagType::External | TagType::Adjacent { .. } | TagType::None => return,
    };

    let diagnose_conflict = || {
        cx.error_spanned_by(
            cont.original,
            format!("variant field name `{}` conflicts with internal tag", tag),
        );
    };

    for variant in variants {
        match variant.style {
            Style::Struct => {
                for field in &variant.fields {
                    let check_ser =
                        !(field.attrs.skip_serializing() || variant.attrs.skip_serializing());
                    let check_de =
                        !(field.attrs.skip_deserializing() || variant.attrs.skip_deserializing());
                    let name = field.attrs.name();
                    let ser_name = name.serialize_name();

                    if check_ser && ser_name == tag {
                        diagnose_conflict();
                        return;
                    }

                    for de_name in field.attrs.aliases() {
                        if check_de && de_name == tag {
                            diagnose_conflict();
                            return;
                        }
                    }
                }
            }
            Style::Unit | Style::Newtype | Style::Tuple => {}
        }
    }
}

// In the case of adjacently-tagged enums, the type and the contents tag must
// differ, for the same reason.
fn check_adjacent_tag_conflict(cx: &Ctxt, cont: &Container) {
    let (type_tag, content_tag) = match cont.attrs.tag() {
        TagType::Adjacent { tag, content } => (tag, content),
        TagType::Internal { .. } | TagType::External | TagType::None => return,
    };

    if type_tag == content_tag {
        cx.error_spanned_by(
            cont.original,
            format!(
                "enum tags `{}` for type and content conflict with each other",
                type_tag
            ),
        );
    }
}

// Enums and unit structs cannot be transparent.
fn check_transparent(cx: &Ctxt, cont: &mut Container, derive: Derive) {
    if !cont.attrs.transparent() {
        return;
    }

    if cont.attrs.type_from().is_some() {
        cx.error_spanned_by(
            cont.original,
            "#[serde(transparent)] is not allowed with #[serde(from = \"...\")]",
        );
    }

    if cont.attrs.type_try_from().is_some() {
        cx.error_spanned_by(
            cont.original,
            "#[serde(transparent)] is not allowed with #[serde(try_from = \"...\")]",
        );
    }

    if cont.attrs.type_into().is_some() {
        cx.error_spanned_by(
            cont.original,
            "#[serde(transparent)] is not allowed with #[serde(into = \"...\")]",
        );
    }

    let fields = match &mut cont.data {
        Data::Enum(_) => {
            cx.error_spanned_by(
                cont.original,
                "#[serde(transparent)] is not allowed on an enum",
            );
            return;
        }
        Data::Struct(Style::Unit, _) => {
            cx.error_spanned_by(
                cont.original,
                "#[serde(transparent)] is not allowed on a unit struct",
            );
            return;
        }
        Data::Struct(_, fields) => fields,
    };

    let mut transparent_field = None;

    for field in fields {
        if allow_transparent(field, derive) {
            if transparent_field.is_some() {
                cx.error_spanned_by(
                    cont.original,
                    "#[serde(transparent)] requires struct to have at most one transparent field",
                );
                return;
            }
            transparent_field = Some(field);
        }
    }

    match transparent_field {
        Some(transparent_field) => transparent_field.attrs.mark_transparent(),
        None => match derive {
            Derive::Serialize => {
                cx.error_spanned_by(
                    cont.original,
                    "#[serde(transparent)] requires at least one field that is not skipped",
                );
            }
            Derive::Deserialize => {
                cx.error_spanned_by(
                    cont.original,
                    "#[serde(transparent)] requires at least one field that is neither skipped nor has a default",
                );
            }
        },
    }
}

fn member_message(member: &Member) -> String {
    match member {
        Member::Named(ident) => format!("`{}`", ident),
        Member::Unnamed(i) => format!("#{}", i.index),
    }
}

fn allow_transparent(field: &Field, derive: Derive) -> bool {
    if let Type::Path(ty) = ungroup(field.ty) {
        if let Some(seg) = ty.path.segments.last() {
            if seg.ident == "PhantomData" {
                return false;
            }
        }
    }

    match derive {
        Derive::Serialize => !field.attrs.skip_serializing(),
        Derive::Deserialize => !field.attrs.skip_deserializing() && field.attrs.default().is_none(),
    }
}

fn check_from_and_try_from(cx: &Ctxt, cont: &mut Container) {
    if cont.attrs.type_from().is_some() && cont.attrs.type_try_from().is_some() {
        cx.error_spanned_by(
            cont.original,
            "#[serde(from = \"...\")] and #[serde(try_from = \"...\")] conflict with each other",
        );
    }
}