1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
#![cfg_attr(not(feature = "full"), allow(dead_code))]
//! Yield points for improved cooperative scheduling.
//!
//! Documentation for this can be found in the [`tokio::task`] module.
//!
//! [`tokio::task`]: crate::task.
// ```ignore
// # use tokio_stream::{Stream, StreamExt};
// async fn drop_all<I: Stream + Unpin>(mut input: I) {
// while let Some(_) = input.next().await {
// tokio::coop::proceed().await;
// }
// }
// ```
//
// The `proceed` future will coordinate with the executor to make sure that
// every so often control is yielded back to the executor so it can run other
// tasks.
//
// # Placing yield points
//
// Voluntary yield points should be placed _after_ at least some work has been
// done. If they are not, a future sufficiently deep in the task hierarchy may
// end up _never_ getting to run because of the number of yield points that
// inevitably appear before it is reached. In general, you will want yield
// points to only appear in "leaf" futures -- those that do not themselves poll
// other futures. By doing this, you avoid double-counting each iteration of
// the outer future against the cooperating budget.
use crate::runtime::context;
/// Opaque type tracking the amount of "work" a task may still do before
/// yielding back to the scheduler.
#[derive(Debug, Copy, Clone)]
pub(crate) struct Budget(Option<u8>);
pub(crate) struct BudgetDecrement {
success: bool,
hit_zero: bool,
}
impl Budget {
/// Budget assigned to a task on each poll.
///
/// The value itself is chosen somewhat arbitrarily. It needs to be high
/// enough to amortize wakeup and scheduling costs, but low enough that we
/// do not starve other tasks for too long. The value also needs to be high
/// enough that particularly deep tasks are able to do at least some useful
/// work at all.
///
/// Note that as more yield points are added in the ecosystem, this value
/// will probably also have to be raised.
const fn initial() -> Budget {
Budget(Some(128))
}
/// Returns an unconstrained budget. Operations will not be limited.
pub(super) const fn unconstrained() -> Budget {
Budget(None)
}
fn has_remaining(self) -> bool {
self.0.map(|budget| budget > 0).unwrap_or(true)
}
}
/// Runs the given closure with a cooperative task budget. When the function
/// returns, the budget is reset to the value prior to calling the function.
#[inline(always)]
pub(crate) fn budget<R>(f: impl FnOnce() -> R) -> R {
with_budget(Budget::initial(), f)
}
/// Runs the given closure with an unconstrained task budget. When the function returns, the budget
/// is reset to the value prior to calling the function.
#[inline(always)]
pub(crate) fn with_unconstrained<R>(f: impl FnOnce() -> R) -> R {
with_budget(Budget::unconstrained(), f)
}
#[inline(always)]
fn with_budget<R>(budget: Budget, f: impl FnOnce() -> R) -> R {
struct ResetGuard {
prev: Budget,
}
impl Drop for ResetGuard {
fn drop(&mut self) {
let _ = context::budget(|cell| {
cell.set(self.prev);
});
}
}
#[allow(unused_variables)]
let maybe_guard = context::budget(|cell| {
let prev = cell.get();
cell.set(budget);
ResetGuard { prev }
});
// The function is called regardless even if the budget is not successfully
// set due to the thread-local being destroyed.
f()
}
#[inline(always)]
pub(crate) fn has_budget_remaining() -> bool {
// If the current budget cannot be accessed due to the thread-local being
// shutdown, then we assume there is budget remaining.
context::budget(|cell| cell.get().has_remaining()).unwrap_or(true)
}
cfg_rt_multi_thread! {
/// Sets the current task's budget.
pub(crate) fn set(budget: Budget) {
let _ = context::budget(|cell| cell.set(budget));
}
}
cfg_rt! {
/// Forcibly removes the budgeting constraints early.
///
/// Returns the remaining budget
pub(crate) fn stop() -> Budget {
context::budget(|cell| {
let prev = cell.get();
cell.set(Budget::unconstrained());
prev
}).unwrap_or(Budget::unconstrained())
}
}
cfg_coop! {
use std::cell::Cell;
use std::task::{Context, Poll};
#[must_use]
pub(crate) struct RestoreOnPending(Cell<Budget>);
impl RestoreOnPending {
pub(crate) fn made_progress(&self) {
self.0.set(Budget::unconstrained());
}
}
impl Drop for RestoreOnPending {
fn drop(&mut self) {
// Don't reset if budget was unconstrained or if we made progress.
// They are both represented as the remembered budget being unconstrained.
let budget = self.0.get();
if !budget.is_unconstrained() {
let _ = context::budget(|cell| {
cell.set(budget);
});
}
}
}
/// Returns `Poll::Pending` if the current task has exceeded its budget and should yield.
///
/// When you call this method, the current budget is decremented. However, to ensure that
/// progress is made every time a task is polled, the budget is automatically restored to its
/// former value if the returned `RestoreOnPending` is dropped. It is the caller's
/// responsibility to call `RestoreOnPending::made_progress` if it made progress, to ensure
/// that the budget empties appropriately.
///
/// Note that `RestoreOnPending` restores the budget **as it was before `poll_proceed`**.
/// Therefore, if the budget is _further_ adjusted between when `poll_proceed` returns and
/// `RestRestoreOnPending` is dropped, those adjustments are erased unless the caller indicates
/// that progress was made.
#[inline]
pub(crate) fn poll_proceed(cx: &mut Context<'_>) -> Poll<RestoreOnPending> {
context::budget(|cell| {
let mut budget = cell.get();
let decrement = budget.decrement();
if decrement.success {
let restore = RestoreOnPending(Cell::new(cell.get()));
cell.set(budget);
// avoid double counting
if decrement.hit_zero {
inc_budget_forced_yield_count();
}
Poll::Ready(restore)
} else {
cx.waker().wake_by_ref();
Poll::Pending
}
}).unwrap_or(Poll::Ready(RestoreOnPending(Cell::new(Budget::unconstrained()))))
}
cfg_rt! {
cfg_metrics! {
#[inline(always)]
fn inc_budget_forced_yield_count() {
let _ = context::with_current(|handle| {
handle.scheduler_metrics().inc_budget_forced_yield_count();
});
}
}
cfg_not_metrics! {
#[inline(always)]
fn inc_budget_forced_yield_count() {}
}
}
cfg_not_rt! {
#[inline(always)]
fn inc_budget_forced_yield_count() {}
}
impl Budget {
/// Decrements the budget. Returns `true` if successful. Decrementing fails
/// when there is not enough remaining budget.
fn decrement(&mut self) -> BudgetDecrement {
if let Some(num) = &mut self.0 {
if *num > 0 {
*num -= 1;
let hit_zero = *num == 0;
BudgetDecrement { success: true, hit_zero }
} else {
BudgetDecrement { success: false, hit_zero: false }
}
} else {
BudgetDecrement { success: true, hit_zero: false }
}
}
fn is_unconstrained(self) -> bool {
self.0.is_none()
}
}
}
#[cfg(all(test, not(loom)))]
mod test {
use super::*;
#[cfg(all(target_family = "wasm", not(target_os = "wasi")))]
use wasm_bindgen_test::wasm_bindgen_test as test;
fn get() -> Budget {
context::budget(|cell| cell.get()).unwrap_or(Budget::unconstrained())
}
#[test]
fn budgeting() {
use futures::future::poll_fn;
use tokio_test::*;
assert!(get().0.is_none());
let coop = assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx)));
assert!(get().0.is_none());
drop(coop);
assert!(get().0.is_none());
budget(|| {
assert_eq!(get().0, Budget::initial().0);
let coop = assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx)));
assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 1);
drop(coop);
// we didn't make progress
assert_eq!(get().0, Budget::initial().0);
let coop = assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx)));
assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 1);
coop.made_progress();
drop(coop);
// we _did_ make progress
assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 1);
let coop = assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx)));
assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 2);
coop.made_progress();
drop(coop);
assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 2);
budget(|| {
assert_eq!(get().0, Budget::initial().0);
let coop = assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx)));
assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 1);
coop.made_progress();
drop(coop);
assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 1);
});
assert_eq!(get().0.unwrap(), Budget::initial().0.unwrap() - 2);
});
assert!(get().0.is_none());
budget(|| {
let n = get().0.unwrap();
for _ in 0..n {
let coop = assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx)));
coop.made_progress();
}
let mut task = task::spawn(poll_fn(|cx| {
let coop = ready!(poll_proceed(cx));
coop.made_progress();
Poll::Ready(())
}));
assert_pending!(task.poll());
});
}
}