1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
use crate::error::{ErrMode, ErrorKind, ParserError};
use crate::stream::Stream;
use crate::trace::trace;
use crate::*;
#[doc(inline)]
pub use crate::dispatch;
/// Helper trait for the [alt()] combinator.
///
/// This trait is implemented for tuples of up to 21 elements
pub trait Alt<I, O, E> {
/// Tests each parser in the tuple and returns the result of the first one that succeeds
fn choice(&mut self, input: &mut I) -> PResult<O, E>;
}
/// Pick the first successful parser
///
/// For tight control over the error, add a final case using [`fail`][crate::combinator::fail].
/// Alternatively, with a [custom error type][crate::_topic::error], it is possible to track all
/// errors or return the error of the parser that went the farthest in the input data.
///
/// When the alternative cases have unique prefixes, [`dispatch`] can offer better performance.
///
/// # Example
///
/// ```rust
/// # use winnow::{error::ErrMode, error::InputError,error::ErrorKind, error::Needed};
/// # use winnow::prelude::*;
/// use winnow::ascii::{alpha1, digit1};
/// use winnow::combinator::alt;
/// # fn main() {
/// fn parser(input: &str) -> IResult<&str, &str> {
/// alt((alpha1, digit1)).parse_peek(input)
/// };
///
/// // the first parser, alpha1, recognizes the input
/// assert_eq!(parser("abc"), Ok(("", "abc")));
///
/// // the first parser returns an error, so alt tries the second one
/// assert_eq!(parser("123456"), Ok(("", "123456")));
///
/// // both parsers failed, and with the default error type, alt will return the last error
/// assert_eq!(parser(" "), Err(ErrMode::Backtrack(InputError::new(" ", ErrorKind::Slice))));
/// # }
/// ```
#[doc(alias = "choice")]
pub fn alt<I: Stream, O, E: ParserError<I>, List: Alt<I, O, E>>(
mut l: List,
) -> impl Parser<I, O, E> {
trace("alt", move |i: &mut I| l.choice(i))
}
/// Helper trait for the [permutation()] combinator.
///
/// This trait is implemented for tuples of up to 21 elements
pub trait Permutation<I, O, E> {
/// Tries to apply all parsers in the tuple in various orders until all of them succeed
fn permutation(&mut self, input: &mut I) -> PResult<O, E>;
}
/// Applies a list of parsers in any order.
///
/// Permutation will succeed if all of the child parsers succeeded.
/// It takes as argument a tuple of parsers, and returns a
/// tuple of the parser results.
///
/// ```rust
/// # use winnow::{error::ErrMode,error::{InputError, ErrorKind}, error::Needed};
/// # use winnow::prelude::*;
/// use winnow::ascii::{alpha1, digit1};
/// use winnow::combinator::permutation;
/// # fn main() {
/// fn parser(input: &str) -> IResult<&str, (&str, &str)> {
/// permutation((alpha1, digit1)).parse_peek(input)
/// }
///
/// // permutation recognizes alphabetic characters then digit
/// assert_eq!(parser("abc123"), Ok(("", ("abc", "123"))));
///
/// // but also in inverse order
/// assert_eq!(parser("123abc"), Ok(("", ("abc", "123"))));
///
/// // it will fail if one of the parsers failed
/// assert_eq!(parser("abc;"), Err(ErrMode::Backtrack(InputError::new(";", ErrorKind::Slice))));
/// # }
/// ```
///
/// The parsers are applied greedily: if there are multiple unapplied parsers
/// that could parse the next slice of input, the first one is used.
/// ```rust
/// # use winnow::{error::ErrMode, error::{InputError, ErrorKind}};
/// # use winnow::prelude::*;
/// use winnow::combinator::permutation;
/// use winnow::token::any;
///
/// fn parser(input: &str) -> IResult<&str, (char, char)> {
/// permutation((any, 'a')).parse_peek(input)
/// }
///
/// // any parses 'b', then char('a') parses 'a'
/// assert_eq!(parser("ba"), Ok(("", ('b', 'a'))));
///
/// // any parses 'a', then char('a') fails on 'b',
/// // even though char('a') followed by any would succeed
/// assert_eq!(parser("ab"), Err(ErrMode::Backtrack(InputError::new("b", ErrorKind::Verify))));
/// ```
///
pub fn permutation<I: Stream, O, E: ParserError<I>, List: Permutation<I, O, E>>(
mut l: List,
) -> impl Parser<I, O, E> {
trace("permutation", move |i: &mut I| l.permutation(i))
}
impl<const N: usize, I: Stream, O, E: ParserError<I>, P: Parser<I, O, E>> Alt<I, O, E> for [P; N] {
fn choice(&mut self, input: &mut I) -> PResult<O, E> {
let mut error: Option<E> = None;
let start = input.checkpoint();
for branch in self {
input.reset(start.clone());
match branch.parse_next(input) {
Err(ErrMode::Backtrack(e)) => {
error = match error {
Some(error) => Some(error.or(e)),
None => Some(e),
};
}
res => return res,
}
}
match error {
Some(e) => Err(ErrMode::Backtrack(e.append(input, ErrorKind::Alt))),
None => Err(ErrMode::assert(input, "`alt` needs at least one parser")),
}
}
}
macro_rules! alt_trait(
($first:ident $second:ident $($id: ident)+) => (
alt_trait!(__impl $first $second; $($id)+);
);
(__impl $($current:ident)*; $head:ident $($id: ident)+) => (
alt_trait_impl!($($current)*);
alt_trait!(__impl $($current)* $head; $($id)+);
);
(__impl $($current:ident)*; $head:ident) => (
alt_trait_impl!($($current)*);
alt_trait_impl!($($current)* $head);
);
);
macro_rules! alt_trait_impl(
($($id:ident)+) => (
impl<
I: Stream, Output, Error: ParserError<I>,
$($id: Parser<I, Output, Error>),+
> Alt<I, Output, Error> for ( $($id),+ ) {
fn choice(&mut self, input: &mut I) -> PResult<Output, Error> {
let start = input.checkpoint();
match self.0.parse_next(input) {
Err(ErrMode::Backtrack(e)) => alt_trait_inner!(1, self, input, start, e, $($id)+),
res => res,
}
}
}
);
);
macro_rules! alt_trait_inner(
($it:tt, $self:expr, $input:expr, $start:ident, $err:expr, $head:ident $($id:ident)+) => ({
$input.reset($start.clone());
match $self.$it.parse_next($input) {
Err(ErrMode::Backtrack(e)) => {
let err = $err.or(e);
succ!($it, alt_trait_inner!($self, $input, $start, err, $($id)+))
}
res => res,
}
});
($it:tt, $self:expr, $input:expr, $start:ident, $err:expr, $head:ident) => ({
Err(ErrMode::Backtrack($err.append($input, ErrorKind::Alt)))
});
);
alt_trait!(Alt2 Alt3 Alt4 Alt5 Alt6 Alt7 Alt8 Alt9 Alt10 Alt11 Alt12 Alt13 Alt14 Alt15 Alt16 Alt17 Alt18 Alt19 Alt20 Alt21 Alt22);
// Manually implement Alt for (A,), the 1-tuple type
impl<I, O, E: ParserError<I>, A: Parser<I, O, E>> Alt<I, O, E> for (A,) {
fn choice(&mut self, input: &mut I) -> PResult<O, E> {
self.0.parse_next(input)
}
}
macro_rules! permutation_trait(
(
$name1:ident $ty1:ident $item1:ident
$name2:ident $ty2:ident $item2:ident
$($name3:ident $ty3:ident $item3:ident)*
) => (
permutation_trait!(__impl $name1 $ty1 $item1, $name2 $ty2 $item2; $($name3 $ty3 $item3)*);
);
(
__impl $($name:ident $ty:ident $item:ident),+;
$name1:ident $ty1:ident $item1:ident $($name2:ident $ty2:ident $item2:ident)*
) => (
permutation_trait_impl!($($name $ty $item),+);
permutation_trait!(__impl $($name $ty $item),+ , $name1 $ty1 $item1; $($name2 $ty2 $item2)*);
);
(__impl $($name:ident $ty:ident $item:ident),+;) => (
permutation_trait_impl!($($name $ty $item),+);
);
);
macro_rules! permutation_trait_impl(
($($name:ident $ty:ident $item:ident),+) => (
impl<
I: Stream, $($ty),+ , Error: ParserError<I>,
$($name: Parser<I, $ty, Error>),+
> Permutation<I, ( $($ty),+ ), Error> for ( $($name),+ ) {
fn permutation(&mut self, input: &mut I) -> PResult<( $($ty),+ ), Error> {
let mut res = ($(Option::<$ty>::None),+);
loop {
let mut err: Option<Error> = None;
let start = input.checkpoint();
permutation_trait_inner!(0, self, input, start, res, err, $($name)+);
// If we reach here, every iterator has either been applied before,
// or errored on the remaining input
if let Some(err) = err {
// There are remaining parsers, and all errored on the remaining input
input.reset(start.clone());
return Err(ErrMode::Backtrack(err.append(input, ErrorKind::Alt)));
}
// All parsers were applied
match res {
($(Some($item)),+) => return Ok(($($item),+)),
_ => unreachable!(),
}
}
}
}
);
);
macro_rules! permutation_trait_inner(
($it:tt, $self:expr, $input:ident, $start:ident, $res:expr, $err:expr, $head:ident $($id:ident)*) => (
if $res.$it.is_none() {
$input.reset($start.clone());
match $self.$it.parse_next($input) {
Ok(o) => {
$res.$it = Some(o);
continue;
}
Err(ErrMode::Backtrack(e)) => {
$err = Some(match $err {
Some(err) => err.or(e),
None => e,
});
}
Err(e) => return Err(e),
};
}
succ!($it, permutation_trait_inner!($self, $input, $start, $res, $err, $($id)*));
);
($it:tt, $self:expr, $input:ident, $start:ident, $res:expr, $err:expr,) => ();
);
permutation_trait!(
P1 O1 o1
P2 O2 o2
P3 O3 o3
P4 O4 o4
P5 O5 o5
P6 O6 o6
P7 O7 o7
P8 O8 o8
P9 O9 o9
P10 O10 o10
P11 O11 o11
P12 O12 o12
P13 O13 o13
P14 O14 o14
P15 O15 o15
P16 O16 o16
P17 O17 o17
P18 O18 o18
P19 O19 o19
P20 O20 o20
P21 O21 o21
);