pub trait TryStreamExt: TryStream {
Show 24 methods
// Provided methods
fn err_into<E>(self) -> ErrInto<Self, E>
where Self: Sized,
Self::Error: Into<E> { ... }
fn map_ok<T, F>(self, f: F) -> MapOk<Self, F>
where Self: Sized,
F: FnMut(Self::Ok) -> T { ... }
fn map_err<E, F>(self, f: F) -> MapErr<Self, F>
where Self: Sized,
F: FnMut(Self::Error) -> E { ... }
fn and_then<Fut, F>(self, f: F) -> AndThen<Self, Fut, F>
where F: FnMut(Self::Ok) -> Fut,
Fut: TryFuture<Error = Self::Error>,
Self: Sized { ... }
fn or_else<Fut, F>(self, f: F) -> OrElse<Self, Fut, F>
where F: FnMut(Self::Error) -> Fut,
Fut: TryFuture<Ok = Self::Ok>,
Self: Sized { ... }
fn inspect_ok<F>(self, f: F) -> InspectOk<Self, F>
where F: FnMut(&Self::Ok),
Self: Sized { ... }
fn inspect_err<F>(self, f: F) -> InspectErr<Self, F>
where F: FnMut(&Self::Error),
Self: Sized { ... }
fn into_stream(self) -> IntoStream<Self>
where Self: Sized { ... }
fn try_next(&mut self) -> TryNext<'_, Self> ⓘ
where Self: Unpin { ... }
fn try_for_each<Fut, F>(self, f: F) -> TryForEach<Self, Fut, F> ⓘ
where F: FnMut(Self::Ok) -> Fut,
Fut: TryFuture<Ok = (), Error = Self::Error>,
Self: Sized { ... }
fn try_skip_while<Fut, F>(self, f: F) -> TrySkipWhile<Self, Fut, F>
where F: FnMut(&Self::Ok) -> Fut,
Fut: TryFuture<Ok = bool, Error = Self::Error>,
Self: Sized { ... }
fn try_take_while<Fut, F>(self, f: F) -> TryTakeWhile<Self, Fut, F>
where F: FnMut(&Self::Ok) -> Fut,
Fut: TryFuture<Ok = bool, Error = Self::Error>,
Self: Sized { ... }
fn try_for_each_concurrent<Fut, F>(
self,
limit: impl Into<Option<usize>>,
f: F,
) -> TryForEachConcurrent<Self, Fut, F> ⓘ
where F: FnMut(Self::Ok) -> Fut,
Fut: Future<Output = Result<(), Self::Error>>,
Self: Sized { ... }
fn try_collect<C: Default + Extend<Self::Ok>>(self) -> TryCollect<Self, C> ⓘ
where Self: Sized { ... }
fn try_chunks(self, capacity: usize) -> TryChunks<Self>
where Self: Sized { ... }
fn try_filter<Fut, F>(self, f: F) -> TryFilter<Self, Fut, F>
where Fut: Future<Output = bool>,
F: FnMut(&Self::Ok) -> Fut,
Self: Sized { ... }
fn try_filter_map<Fut, F, T>(self, f: F) -> TryFilterMap<Self, Fut, F>
where Fut: TryFuture<Ok = Option<T>, Error = Self::Error>,
F: FnMut(Self::Ok) -> Fut,
Self: Sized { ... }
fn try_flatten_unordered(
self,
limit: impl Into<Option<usize>>,
) -> TryFlattenUnordered<Self>
where Self::Ok: TryStream + Unpin,
<Self::Ok as TryStream>::Error: From<Self::Error>,
Self: Sized { ... }
fn try_flatten(self) -> TryFlatten<Self>
where Self::Ok: TryStream,
<Self::Ok as TryStream>::Error: From<Self::Error>,
Self: Sized { ... }
fn try_fold<T, Fut, F>(self, init: T, f: F) -> TryFold<Self, Fut, T, F> ⓘ
where F: FnMut(T, Self::Ok) -> Fut,
Fut: TryFuture<Ok = T, Error = Self::Error>,
Self: Sized { ... }
fn try_concat(self) -> TryConcat<Self> ⓘ
where Self: Sized,
Self::Ok: Extend<<<Self as TryStream>::Ok as IntoIterator>::Item> + IntoIterator + Default { ... }
fn try_buffer_unordered(self, n: usize) -> TryBufferUnordered<Self>
where Self::Ok: TryFuture<Error = Self::Error>,
Self: Sized { ... }
fn try_buffered(self, n: usize) -> TryBuffered<Self>
where Self::Ok: TryFuture<Error = Self::Error>,
Self: Sized { ... }
fn try_poll_next_unpin(
&mut self,
cx: &mut Context<'_>,
) -> Poll<Option<Result<Self::Ok, Self::Error>>>
where Self: Unpin { ... }
}
Expand description
Adapters specific to Result
-returning streams
Provided Methods§
sourcefn err_into<E>(self) -> ErrInto<Self, E>
fn err_into<E>(self) -> ErrInto<Self, E>
Wraps the current stream in a new stream which converts the error type into the one provided.
§Examples
use futures::stream::{self, TryStreamExt};
let mut stream =
stream::iter(vec![Ok(()), Err(5i32)])
.err_into::<i64>();
assert_eq!(stream.try_next().await, Ok(Some(())));
assert_eq!(stream.try_next().await, Err(5i64));
sourcefn map_ok<T, F>(self, f: F) -> MapOk<Self, F>
fn map_ok<T, F>(self, f: F) -> MapOk<Self, F>
Wraps the current stream in a new stream which maps the success value using the provided closure.
§Examples
use futures::stream::{self, TryStreamExt};
let mut stream =
stream::iter(vec![Ok(5), Err(0)])
.map_ok(|x| x + 2);
assert_eq!(stream.try_next().await, Ok(Some(7)));
assert_eq!(stream.try_next().await, Err(0));
sourcefn map_err<E, F>(self, f: F) -> MapErr<Self, F>
fn map_err<E, F>(self, f: F) -> MapErr<Self, F>
Wraps the current stream in a new stream which maps the error value using the provided closure.
§Examples
use futures::stream::{self, TryStreamExt};
let mut stream =
stream::iter(vec![Ok(5), Err(0)])
.map_err(|x| x + 2);
assert_eq!(stream.try_next().await, Ok(Some(5)));
assert_eq!(stream.try_next().await, Err(2));
sourcefn and_then<Fut, F>(self, f: F) -> AndThen<Self, Fut, F>
fn and_then<Fut, F>(self, f: F) -> AndThen<Self, Fut, F>
Chain on a computation for when a value is ready, passing the successful
results to the provided closure f
.
This function can be used to run a unit of work when the next successful value on a stream is ready. The closure provided will be yielded a value when ready, and the returned future will then be run to completion to produce the next value on this stream.
Any errors produced by this stream will not be passed to the closure, and will be passed through.
The returned value of the closure must implement the TryFuture
trait
and can represent some more work to be done before the composed stream
is finished.
Note that this function consumes the receiving stream and returns a wrapped version of it.
To process the entire stream and return a single future representing
success or error, use try_for_each
instead.
§Examples
use futures::channel::mpsc;
use futures::future;
use futures::stream::TryStreamExt;
let (_tx, rx) = mpsc::channel::<Result<i32, ()>>(1);
let rx = rx.and_then(|result| {
future::ok(if result % 2 == 0 {
Some(result)
} else {
None
})
});
sourcefn or_else<Fut, F>(self, f: F) -> OrElse<Self, Fut, F>
fn or_else<Fut, F>(self, f: F) -> OrElse<Self, Fut, F>
Chain on a computation for when an error happens, passing the
erroneous result to the provided closure f
.
This function can be used to run a unit of work and attempt to recover from an error if one happens. The closure provided will be yielded an error when one appears, and the returned future will then be run to completion to produce the next value on this stream.
Any successful values produced by this stream will not be passed to the closure, and will be passed through.
The returned value of the closure must implement the TryFuture
trait
and can represent some more work to be done before the composed stream
is finished.
Note that this function consumes the receiving stream and returns a wrapped version of it.
sourcefn inspect_ok<F>(self, f: F) -> InspectOk<Self, F>
fn inspect_ok<F>(self, f: F) -> InspectOk<Self, F>
Do something with the success value of this stream, afterwards passing it on.
This is similar to the StreamExt::inspect
method where it allows
easily inspecting the success value as it passes through the stream, for
example to debug what’s going on.
sourcefn inspect_err<F>(self, f: F) -> InspectErr<Self, F>
fn inspect_err<F>(self, f: F) -> InspectErr<Self, F>
Do something with the error value of this stream, afterwards passing it on.
This is similar to the StreamExt::inspect
method where it allows
easily inspecting the error value as it passes through the stream, for
example to debug what’s going on.
sourcefn into_stream(self) -> IntoStream<Self>where
Self: Sized,
fn into_stream(self) -> IntoStream<Self>where
Self: Sized,
Wraps a TryStream
into a type that implements
Stream
TryStream
s currently do not implement the
Stream
trait because of limitations
of the compiler.
§Examples
use futures::stream::{Stream, TryStream, TryStreamExt};
fn make_try_stream() -> impl TryStream<Ok = T, Error = E> { // ... }
fn take_stream(stream: impl Stream<Item = Result<T, E>>) { /* ... */ }
take_stream(make_try_stream().into_stream());
sourcefn try_next(&mut self) -> TryNext<'_, Self> ⓘwhere
Self: Unpin,
fn try_next(&mut self) -> TryNext<'_, Self> ⓘwhere
Self: Unpin,
Creates a future that attempts to resolve the next item in the stream. If an error is encountered before the next item, the error is returned instead.
This is similar to the Stream::next
combinator, but returns a
Result<Option<T>, E>
rather than an Option<Result<T, E>>
, making
for easy use with the ?
operator.
§Examples
use futures::stream::{self, TryStreamExt};
let mut stream = stream::iter(vec![Ok(()), Err(())]);
assert_eq!(stream.try_next().await, Ok(Some(())));
assert_eq!(stream.try_next().await, Err(()));
sourcefn try_for_each<Fut, F>(self, f: F) -> TryForEach<Self, Fut, F> ⓘ
fn try_for_each<Fut, F>(self, f: F) -> TryForEach<Self, Fut, F> ⓘ
Attempts to run this stream to completion, executing the provided asynchronous closure for each element on the stream.
The provided closure will be called for each item this stream produces, yielding a future. That future will then be executed to completion before moving on to the next item.
The returned value is a Future
where the
Output
type is
Result<(), Self::Error>
. If any of the intermediate
futures or the stream returns an error, this future will return
immediately with an error.
§Examples
use futures::future;
use futures::stream::{self, TryStreamExt};
let mut x = 0i32;
{
let fut = stream::repeat(Ok(1)).try_for_each(|item| {
x += item;
future::ready(if x == 3 { Err(()) } else { Ok(()) })
});
assert_eq!(fut.await, Err(()));
}
assert_eq!(x, 3);
sourcefn try_skip_while<Fut, F>(self, f: F) -> TrySkipWhile<Self, Fut, F>
fn try_skip_while<Fut, F>(self, f: F) -> TrySkipWhile<Self, Fut, F>
Skip elements on this stream while the provided asynchronous predicate
resolves to true
.
This function is similar to
StreamExt::skip_while
but exits
early if an error occurs.
§Examples
use futures::future;
use futures::stream::{self, TryStreamExt};
let stream = stream::iter(vec![Ok::<i32, i32>(1), Ok(3), Ok(2)]);
let stream = stream.try_skip_while(|x| future::ready(Ok(*x < 3)));
let output: Result<Vec<i32>, i32> = stream.try_collect().await;
assert_eq!(output, Ok(vec![3, 2]));
sourcefn try_take_while<Fut, F>(self, f: F) -> TryTakeWhile<Self, Fut, F>
fn try_take_while<Fut, F>(self, f: F) -> TryTakeWhile<Self, Fut, F>
Take elements on this stream while the provided asynchronous predicate
resolves to true
.
This function is similar to
StreamExt::take_while
but exits
early if an error occurs.
§Examples
use futures::future;
use futures::stream::{self, TryStreamExt};
let stream = stream::iter(vec![Ok::<i32, i32>(1), Ok(2), Ok(3), Ok(2)]);
let stream = stream.try_take_while(|x| future::ready(Ok(*x < 3)));
let output: Result<Vec<i32>, i32> = stream.try_collect().await;
assert_eq!(output, Ok(vec![1, 2]));
sourcefn try_for_each_concurrent<Fut, F>(
self,
limit: impl Into<Option<usize>>,
f: F,
) -> TryForEachConcurrent<Self, Fut, F> ⓘ
fn try_for_each_concurrent<Fut, F>( self, limit: impl Into<Option<usize>>, f: F, ) -> TryForEachConcurrent<Self, Fut, F> ⓘ
Attempts to run this stream to completion, executing the provided asynchronous closure for each element on the stream concurrently as elements become available, exiting as soon as an error occurs.
This is similar to
StreamExt::for_each_concurrent
,
but will resolve to an error immediately if the underlying stream or the provided
closure return an error.
This method is only available when the std
or alloc
feature of this
library is activated, and it is activated by default.
§Examples
use futures::channel::oneshot;
use futures::stream::{self, StreamExt, TryStreamExt};
let (tx1, rx1) = oneshot::channel();
let (tx2, rx2) = oneshot::channel();
let (_tx3, rx3) = oneshot::channel();
let stream = stream::iter(vec![rx1, rx2, rx3]);
let fut = stream.map(Ok).try_for_each_concurrent(
/* limit */ 2,
|rx| async move {
let res: Result<(), oneshot::Canceled> = rx.await;
res
}
);
tx1.send(()).unwrap();
// Drop the second sender so that `rx2` resolves to `Canceled`.
drop(tx2);
// The final result is an error because the second future
// resulted in an error.
assert_eq!(Err(oneshot::Canceled), fut.await);
sourcefn try_collect<C: Default + Extend<Self::Ok>>(self) -> TryCollect<Self, C> ⓘwhere
Self: Sized,
fn try_collect<C: Default + Extend<Self::Ok>>(self) -> TryCollect<Self, C> ⓘwhere
Self: Sized,
Attempt to transform a stream into a collection, returning a future representing the result of that computation.
This combinator will collect all successful results of this stream and collect them into the specified collection type. If an error happens then all collected elements will be dropped and the error will be returned.
The returned future will be resolved when the stream terminates.
§Examples
use futures::channel::mpsc;
use futures::stream::TryStreamExt;
use std::thread;
let (tx, rx) = mpsc::unbounded();
thread::spawn(move || {
for i in 1..=5 {
tx.unbounded_send(Ok(i)).unwrap();
}
tx.unbounded_send(Err(6)).unwrap();
});
let output: Result<Vec<i32>, i32> = rx.try_collect().await;
assert_eq!(output, Err(6));
sourcefn try_chunks(self, capacity: usize) -> TryChunks<Self>where
Self: Sized,
fn try_chunks(self, capacity: usize) -> TryChunks<Self>where
Self: Sized,
An adaptor for chunking up successful items of the stream inside a vector.
This combinator will attempt to pull successful items from this stream and buffer
them into a local vector. At most capacity
items will get buffered
before they’re yielded from the returned stream.
Note that the vectors returned from this iterator may not always have
capacity
elements. If the underlying stream ended and only a partial
vector was created, it’ll be returned. Additionally if an error happens
from the underlying stream then the currently buffered items will be
yielded.
This method is only available when the std
or alloc
feature of this
library is activated, and it is activated by default.
This function is similar to
StreamExt::chunks
but exits
early if an error occurs.
§Examples
use futures::stream::{self, TryChunksError, TryStreamExt};
let stream = stream::iter(vec![Ok::<i32, i32>(1), Ok(2), Ok(3), Err(4), Ok(5), Ok(6)]);
let mut stream = stream.try_chunks(2);
assert_eq!(stream.try_next().await, Ok(Some(vec![1, 2])));
assert_eq!(stream.try_next().await, Err(TryChunksError(vec![3], 4)));
assert_eq!(stream.try_next().await, Ok(Some(vec![5, 6])));
§Panics
This method will panic if capacity
is zero.
sourcefn try_filter<Fut, F>(self, f: F) -> TryFilter<Self, Fut, F>
fn try_filter<Fut, F>(self, f: F) -> TryFilter<Self, Fut, F>
Attempt to filter the values produced by this stream according to the provided asynchronous closure.
As values of this stream are made available, the provided predicate f
will be run on them. If the predicate returns a Future
which resolves
to true
, then the stream will yield the value, but if the predicate
return a Future
which resolves to false
, then the value will be
discarded and the next value will be produced.
All errors are passed through without filtering in this combinator.
Note that this function consumes the stream passed into it and returns a
wrapped version of it, similar to the existing filter
methods in
the standard library.
§Examples
use futures::future;
use futures::stream::{self, StreamExt, TryStreamExt};
let stream = stream::iter(vec![Ok(1i32), Ok(2i32), Ok(3i32), Err("error")]);
let mut evens = stream.try_filter(|x| {
future::ready(x % 2 == 0)
});
assert_eq!(evens.next().await, Some(Ok(2)));
assert_eq!(evens.next().await, Some(Err("error")));
sourcefn try_filter_map<Fut, F, T>(self, f: F) -> TryFilterMap<Self, Fut, F>
fn try_filter_map<Fut, F, T>(self, f: F) -> TryFilterMap<Self, Fut, F>
Attempt to filter the values produced by this stream while simultaneously mapping them to a different type according to the provided asynchronous closure.
As values of this stream are made available, the provided function will
be run on them. If the future returned by the predicate f
resolves to
Some(item)
then the stream will yield the value item
, but if
it resolves to None
then the next value will be produced.
All errors are passed through without filtering in this combinator.
Note that this function consumes the stream passed into it and returns a
wrapped version of it, similar to the existing filter_map
methods in
the standard library.
§Examples
use futures::stream::{self, StreamExt, TryStreamExt};
use futures::pin_mut;
let stream = stream::iter(vec![Ok(1i32), Ok(6i32), Err("error")]);
let halves = stream.try_filter_map(|x| async move {
let ret = if x % 2 == 0 { Some(x / 2) } else { None };
Ok(ret)
});
pin_mut!(halves);
assert_eq!(halves.next().await, Some(Ok(3)));
assert_eq!(halves.next().await, Some(Err("error")));
sourcefn try_flatten_unordered(
self,
limit: impl Into<Option<usize>>,
) -> TryFlattenUnordered<Self>
fn try_flatten_unordered( self, limit: impl Into<Option<usize>>, ) -> TryFlattenUnordered<Self>
Flattens a stream of streams into just one continuous stream. Produced streams will be polled concurrently and any errors will be passed through without looking at them. If the underlying base stream returns an error, it will be immediately propagated.
The only argument is an optional limit on the number of concurrently
polled streams. If this limit is not None
, no more than limit
streams
will be polled at the same time. The limit
argument is of type
Into<Option<usize>>
, and so can be provided as either None
,
Some(10)
, or just 10
. Note: a limit of zero is interpreted as
no limit at all, and will have the same result as passing in None
.
§Examples
use futures::channel::mpsc;
use futures::stream::{StreamExt, TryStreamExt};
use std::thread;
let (tx1, rx1) = mpsc::unbounded();
let (tx2, rx2) = mpsc::unbounded();
let (tx3, rx3) = mpsc::unbounded();
thread::spawn(move || {
tx1.unbounded_send(Ok(1)).unwrap();
});
thread::spawn(move || {
tx2.unbounded_send(Ok(2)).unwrap();
tx2.unbounded_send(Err(3)).unwrap();
tx2.unbounded_send(Ok(4)).unwrap();
});
thread::spawn(move || {
tx3.unbounded_send(Ok(rx1)).unwrap();
tx3.unbounded_send(Ok(rx2)).unwrap();
tx3.unbounded_send(Err(5)).unwrap();
});
let stream = rx3.try_flatten_unordered(None);
let mut values: Vec<_> = stream.collect().await;
values.sort();
assert_eq!(values, vec![Ok(1), Ok(2), Ok(4), Err(3), Err(5)]);
sourcefn try_flatten(self) -> TryFlatten<Self>
fn try_flatten(self) -> TryFlatten<Self>
Flattens a stream of streams into just one continuous stream.
If this stream’s elements are themselves streams then this combinator will flatten out the entire stream to one long chain of elements. Any errors are passed through without looking at them, but otherwise each individual stream will get exhausted before moving on to the next.
§Examples
use futures::channel::mpsc;
use futures::stream::{StreamExt, TryStreamExt};
use std::thread;
let (tx1, rx1) = mpsc::unbounded();
let (tx2, rx2) = mpsc::unbounded();
let (tx3, rx3) = mpsc::unbounded();
thread::spawn(move || {
tx1.unbounded_send(Ok(1)).unwrap();
});
thread::spawn(move || {
tx2.unbounded_send(Ok(2)).unwrap();
tx2.unbounded_send(Err(3)).unwrap();
tx2.unbounded_send(Ok(4)).unwrap();
});
thread::spawn(move || {
tx3.unbounded_send(Ok(rx1)).unwrap();
tx3.unbounded_send(Ok(rx2)).unwrap();
tx3.unbounded_send(Err(5)).unwrap();
});
let mut stream = rx3.try_flatten();
assert_eq!(stream.next().await, Some(Ok(1)));
assert_eq!(stream.next().await, Some(Ok(2)));
assert_eq!(stream.next().await, Some(Err(3)));
assert_eq!(stream.next().await, Some(Ok(4)));
assert_eq!(stream.next().await, Some(Err(5)));
assert_eq!(stream.next().await, None);
sourcefn try_fold<T, Fut, F>(self, init: T, f: F) -> TryFold<Self, Fut, T, F> ⓘ
fn try_fold<T, Fut, F>(self, init: T, f: F) -> TryFold<Self, Fut, T, F> ⓘ
Attempt to execute an accumulating asynchronous computation over a stream, collecting all the values into one final result.
This combinator will accumulate all values returned by this stream according to the closure provided. The initial state is also provided to this method and then is returned again by each execution of the closure. Once the entire stream has been exhausted the returned future will resolve to this value.
This method is similar to fold
, but will
exit early if an error is encountered in either the stream or the
provided closure.
§Examples
use futures::stream::{self, TryStreamExt};
let number_stream = stream::iter(vec![Ok::<i32, i32>(1), Ok(2)]);
let sum = number_stream.try_fold(0, |acc, x| async move { Ok(acc + x) });
assert_eq!(sum.await, Ok(3));
let number_stream_with_err = stream::iter(vec![Ok::<i32, i32>(1), Err(2), Ok(1)]);
let sum = number_stream_with_err.try_fold(0, |acc, x| async move { Ok(acc + x) });
assert_eq!(sum.await, Err(2));
sourcefn try_concat(self) -> TryConcat<Self> ⓘwhere
Self: Sized,
Self::Ok: Extend<<<Self as TryStream>::Ok as IntoIterator>::Item> + IntoIterator + Default,
fn try_concat(self) -> TryConcat<Self> ⓘwhere
Self: Sized,
Self::Ok: Extend<<<Self as TryStream>::Ok as IntoIterator>::Item> + IntoIterator + Default,
Attempt to concatenate all items of a stream into a single extendable destination, returning a future representing the end result.
This combinator will extend the first item with the contents of all the subsequent successful results of the stream. If the stream is empty, the default value will be returned.
Works with all collections that implement the Extend
trait.
This method is similar to concat
, but will
exit early if an error is encountered in the stream.
§Examples
use futures::channel::mpsc;
use futures::stream::TryStreamExt;
use std::thread;
let (tx, rx) = mpsc::unbounded::<Result<Vec<i32>, ()>>();
thread::spawn(move || {
for i in (0..3).rev() {
let n = i * 3;
tx.unbounded_send(Ok(vec![n + 1, n + 2, n + 3])).unwrap();
}
});
let result = rx.try_concat().await;
assert_eq!(result, Ok(vec![7, 8, 9, 4, 5, 6, 1, 2, 3]));
sourcefn try_buffer_unordered(self, n: usize) -> TryBufferUnordered<Self>
fn try_buffer_unordered(self, n: usize) -> TryBufferUnordered<Self>
Attempt to execute several futures from a stream concurrently (unordered).
This stream’s Ok
type must be a TryFuture
with an Error
type
that matches the stream’s Error
type.
This adaptor will buffer up to n
futures and then return their
outputs in the order in which they complete. If the underlying stream
returns an error, it will be immediately propagated.
The returned stream will be a stream of results, each containing either an error or a future’s output. An error can be produced either by the underlying stream itself or by one of the futures it yielded.
This method is only available when the std
or alloc
feature of this
library is activated, and it is activated by default.
§Examples
Results are returned in the order of completion:
use futures::channel::oneshot;
use futures::stream::{self, StreamExt, TryStreamExt};
let (send_one, recv_one) = oneshot::channel();
let (send_two, recv_two) = oneshot::channel();
let stream_of_futures = stream::iter(vec![Ok(recv_one), Ok(recv_two)]);
let mut buffered = stream_of_futures.try_buffer_unordered(10);
send_two.send(2i32)?;
assert_eq!(buffered.next().await, Some(Ok(2i32)));
send_one.send(1i32)?;
assert_eq!(buffered.next().await, Some(Ok(1i32)));
assert_eq!(buffered.next().await, None);
Errors from the underlying stream itself are propagated:
use futures::channel::mpsc;
use futures::stream::{StreamExt, TryStreamExt};
let (sink, stream_of_futures) = mpsc::unbounded();
let mut buffered = stream_of_futures.try_buffer_unordered(10);
sink.unbounded_send(Ok(async { Ok(7i32) }))?;
assert_eq!(buffered.next().await, Some(Ok(7i32)));
sink.unbounded_send(Err("error in the stream"))?;
assert_eq!(buffered.next().await, Some(Err("error in the stream")));
sourcefn try_buffered(self, n: usize) -> TryBuffered<Self>
fn try_buffered(self, n: usize) -> TryBuffered<Self>
Attempt to execute several futures from a stream concurrently.
This stream’s Ok
type must be a TryFuture
with an Error
type
that matches the stream’s Error
type.
This adaptor will buffer up to n
futures and then return their
outputs in the same order as the underlying stream. If the underlying stream returns an error, it will
be immediately propagated.
The returned stream will be a stream of results, each containing either an error or a future’s output. An error can be produced either by the underlying stream itself or by one of the futures it yielded.
This method is only available when the std
or alloc
feature of this
library is activated, and it is activated by default.
§Examples
Results are returned in the order of addition:
use futures::channel::oneshot;
use futures::future::lazy;
use futures::stream::{self, StreamExt, TryStreamExt};
let (send_one, recv_one) = oneshot::channel();
let (send_two, recv_two) = oneshot::channel();
let mut buffered = lazy(move |cx| {
let stream_of_futures = stream::iter(vec![Ok(recv_one), Ok(recv_two)]);
let mut buffered = stream_of_futures.try_buffered(10);
assert!(buffered.try_poll_next_unpin(cx).is_pending());
send_two.send(2i32)?;
assert!(buffered.try_poll_next_unpin(cx).is_pending());
Ok::<_, i32>(buffered)
}).await?;
send_one.send(1i32)?;
assert_eq!(buffered.next().await, Some(Ok(1i32)));
assert_eq!(buffered.next().await, Some(Ok(2i32)));
assert_eq!(buffered.next().await, None);
Errors from the underlying stream itself are propagated:
use futures::channel::mpsc;
use futures::stream::{StreamExt, TryStreamExt};
let (sink, stream_of_futures) = mpsc::unbounded();
let mut buffered = stream_of_futures.try_buffered(10);
sink.unbounded_send(Ok(async { Ok(7i32) }))?;
assert_eq!(buffered.next().await, Some(Ok(7i32)));
sink.unbounded_send(Err("error in the stream"))?;
assert_eq!(buffered.next().await, Some(Err("error in the stream")));