1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/*!
Contains architecture independent routines.

These routines are often used as a "fallback" implementation when the more
specialized architecture dependent routines are unavailable.
*/

pub mod memchr;
pub mod packedpair;
pub mod rabinkarp;
#[cfg(feature = "alloc")]
pub mod shiftor;
pub mod twoway;

/// Returns true if and only if `needle` is a prefix of `haystack`.
///
/// This uses a latency optimized variant of `memcmp` internally which *might*
/// make this faster for very short strings.
///
/// # Inlining
///
/// This routine is marked `inline(always)`. If you want to call this function
/// in a way that is not always inlined, you'll need to wrap a call to it in
/// another function that is marked as `inline(never)` or just `inline`.
#[inline(always)]
pub fn is_prefix(haystack: &[u8], needle: &[u8]) -> bool {
    needle.len() <= haystack.len()
        && is_equal(&haystack[..needle.len()], needle)
}

/// Returns true if and only if `needle` is a suffix of `haystack`.
///
/// This uses a latency optimized variant of `memcmp` internally which *might*
/// make this faster for very short strings.
///
/// # Inlining
///
/// This routine is marked `inline(always)`. If you want to call this function
/// in a way that is not always inlined, you'll need to wrap a call to it in
/// another function that is marked as `inline(never)` or just `inline`.
#[inline(always)]
pub fn is_suffix(haystack: &[u8], needle: &[u8]) -> bool {
    needle.len() <= haystack.len()
        && is_equal(&haystack[haystack.len() - needle.len()..], needle)
}

/// Compare corresponding bytes in `x` and `y` for equality.
///
/// That is, this returns true if and only if `x.len() == y.len()` and
/// `x[i] == y[i]` for all `0 <= i < x.len()`.
///
/// # Inlining
///
/// This routine is marked `inline(always)`. If you want to call this function
/// in a way that is not always inlined, you'll need to wrap a call to it in
/// another function that is marked as `inline(never)` or just `inline`.
///
/// # Motivation
///
/// Why not use slice equality instead? Well, slice equality usually results in
/// a call out to the current platform's `libc` which might not be inlineable
/// or have other overhead. This routine isn't guaranteed to be a win, but it
/// might be in some cases.
#[inline(always)]
pub fn is_equal(x: &[u8], y: &[u8]) -> bool {
    if x.len() != y.len() {
        return false;
    }
    // SAFETY: Our pointers are derived directly from borrowed slices which
    // uphold all of our safety guarantees except for length. We account for
    // length with the check above.
    unsafe { is_equal_raw(x.as_ptr(), y.as_ptr(), x.len()) }
}

/// Compare `n` bytes at the given pointers for equality.
///
/// This returns true if and only if `*x.add(i) == *y.add(i)` for all
/// `0 <= i < n`.
///
/// # Inlining
///
/// This routine is marked `inline(always)`. If you want to call this function
/// in a way that is not always inlined, you'll need to wrap a call to it in
/// another function that is marked as `inline(never)` or just `inline`.
///
/// # Motivation
///
/// Why not use slice equality instead? Well, slice equality usually results in
/// a call out to the current platform's `libc` which might not be inlineable
/// or have other overhead. This routine isn't guaranteed to be a win, but it
/// might be in some cases.
///
/// # Safety
///
/// * Both `x` and `y` must be valid for reads of up to `n` bytes.
/// * Both `x` and `y` must point to an initialized value.
/// * Both `x` and `y` must each point to an allocated object and
/// must either be in bounds or at most one byte past the end of the
/// allocated object. `x` and `y` do not need to point to the same allocated
/// object, but they may.
/// * Both `x` and `y` must be _derived from_ a pointer to their respective
/// allocated objects.
/// * The distance between `x` and `x+n` must not overflow `isize`. Similarly
/// for `y` and `y+n`.
/// * The distance being in bounds must not rely on "wrapping around" the
/// address space.
#[inline(always)]
pub unsafe fn is_equal_raw(
    mut x: *const u8,
    mut y: *const u8,
    n: usize,
) -> bool {
    // If we don't have enough bytes to do 4-byte at a time loads, then
    // handle each possible length specially. Note that I used to have a
    // byte-at-a-time loop here and that turned out to be quite a bit slower
    // for the memmem/pathological/defeat-simple-vector-alphabet benchmark.
    if n < 4 {
        return match n {
            0 => true,
            1 => x.read() == y.read(),
            2 => {
                x.cast::<u16>().read_unaligned()
                    == y.cast::<u16>().read_unaligned()
            }
            // I also tried copy_nonoverlapping here and it looks like the
            // codegen is the same.
            3 => x.cast::<[u8; 3]>().read() == y.cast::<[u8; 3]>().read(),
            _ => unreachable!(),
        };
    }
    // When we have 4 or more bytes to compare, then proceed in chunks of 4 at
    // a time using unaligned loads.
    //
    // Also, why do 4 byte loads instead of, say, 8 byte loads? The reason is
    // that this particular version of memcmp is likely to be called with tiny
    // needles. That means that if we do 8 byte loads, then a higher proportion
    // of memcmp calls will use the slower variant above. With that said, this
    // is a hypothesis and is only loosely supported by benchmarks. There's
    // likely some improvement that could be made here. The main thing here
    // though is to optimize for latency, not throughput.

    // SAFETY: The caller is responsible for ensuring the pointers we get are
    // valid and readable for at least `n` bytes. We also do unaligned loads,
    // so there's no need to ensure we're aligned. (This is justified by this
    // routine being specifically for short strings.)
    let xend = x.add(n.wrapping_sub(4));
    let yend = y.add(n.wrapping_sub(4));
    while x < xend {
        let vx = x.cast::<u32>().read_unaligned();
        let vy = y.cast::<u32>().read_unaligned();
        if vx != vy {
            return false;
        }
        x = x.add(4);
        y = y.add(4);
    }
    let vx = xend.cast::<u32>().read_unaligned();
    let vy = yend.cast::<u32>().read_unaligned();
    vx == vy
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn equals_different_lengths() {
        assert!(!is_equal(b"", b"a"));
        assert!(!is_equal(b"a", b""));
        assert!(!is_equal(b"ab", b"a"));
        assert!(!is_equal(b"a", b"ab"));
    }

    #[test]
    fn equals_mismatch() {
        let one_mismatch = [
            (&b"a"[..], &b"x"[..]),
            (&b"ab"[..], &b"ax"[..]),
            (&b"abc"[..], &b"abx"[..]),
            (&b"abcd"[..], &b"abcx"[..]),
            (&b"abcde"[..], &b"abcdx"[..]),
            (&b"abcdef"[..], &b"abcdex"[..]),
            (&b"abcdefg"[..], &b"abcdefx"[..]),
            (&b"abcdefgh"[..], &b"abcdefgx"[..]),
            (&b"abcdefghi"[..], &b"abcdefghx"[..]),
            (&b"abcdefghij"[..], &b"abcdefghix"[..]),
            (&b"abcdefghijk"[..], &b"abcdefghijx"[..]),
            (&b"abcdefghijkl"[..], &b"abcdefghijkx"[..]),
            (&b"abcdefghijklm"[..], &b"abcdefghijklx"[..]),
            (&b"abcdefghijklmn"[..], &b"abcdefghijklmx"[..]),
        ];
        for (x, y) in one_mismatch {
            assert_eq!(x.len(), y.len(), "lengths should match");
            assert!(!is_equal(x, y));
            assert!(!is_equal(y, x));
        }
    }

    #[test]
    fn equals_yes() {
        assert!(is_equal(b"", b""));
        assert!(is_equal(b"a", b"a"));
        assert!(is_equal(b"ab", b"ab"));
        assert!(is_equal(b"abc", b"abc"));
        assert!(is_equal(b"abcd", b"abcd"));
        assert!(is_equal(b"abcde", b"abcde"));
        assert!(is_equal(b"abcdef", b"abcdef"));
        assert!(is_equal(b"abcdefg", b"abcdefg"));
        assert!(is_equal(b"abcdefgh", b"abcdefgh"));
        assert!(is_equal(b"abcdefghi", b"abcdefghi"));
    }

    #[test]
    fn prefix() {
        assert!(is_prefix(b"", b""));
        assert!(is_prefix(b"a", b""));
        assert!(is_prefix(b"ab", b""));
        assert!(is_prefix(b"foo", b"foo"));
        assert!(is_prefix(b"foobar", b"foo"));

        assert!(!is_prefix(b"foo", b"fob"));
        assert!(!is_prefix(b"foobar", b"fob"));
    }

    #[test]
    fn suffix() {
        assert!(is_suffix(b"", b""));
        assert!(is_suffix(b"a", b""));
        assert!(is_suffix(b"ab", b""));
        assert!(is_suffix(b"foo", b"foo"));
        assert!(is_suffix(b"foobar", b"bar"));

        assert!(!is_suffix(b"foo", b"goo"));
        assert!(!is_suffix(b"foobar", b"gar"));
    }
}