async_lock/
barrier.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
use event_listener::{Event, EventListener};
use event_listener_strategy::{easy_wrapper, EventListenerFuture, Strategy};

use core::fmt;
use core::pin::Pin;
use core::task::Poll;

use crate::futures::Lock;
use crate::Mutex;

/// A counter to synchronize multiple tasks at the same time.
#[derive(Debug)]
pub struct Barrier {
    n: usize,
    state: Mutex<State>,
    event: Event,
}

#[derive(Debug)]
struct State {
    count: usize,
    generation_id: u64,
}

impl Barrier {
    const_fn! {
        const_if: #[cfg(not(loom))];
        /// Creates a barrier that can block the given number of tasks.
        ///
        /// A barrier will block `n`-1 tasks which call [`wait()`] and then wake up all tasks
        /// at once when the `n`th task calls [`wait()`].
        ///
        /// [`wait()`]: `Barrier::wait()`
        ///
        /// # Examples
        ///
        /// ```
        /// use async_lock::Barrier;
        ///
        /// let barrier = Barrier::new(5);
        /// ```
        pub const fn new(n: usize) -> Barrier {
            Barrier {
                n,
                state: Mutex::new(State {
                    count: 0,
                    generation_id: 0,
                }),
                event: Event::new(),
            }
        }
    }

    /// Blocks the current task until all tasks reach this point.
    ///
    /// Barriers are reusable after all tasks have synchronized, and can be used continuously.
    ///
    /// Returns a [`BarrierWaitResult`] indicating whether this task is the "leader", meaning the
    /// last task to call this method.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_lock::Barrier;
    /// use futures_lite::future;
    /// use std::sync::Arc;
    /// use std::thread;
    ///
    /// let barrier = Arc::new(Barrier::new(5));
    ///
    /// for _ in 0..5 {
    ///     let b = barrier.clone();
    ///     thread::spawn(move || {
    ///         future::block_on(async {
    ///             // The same messages will be printed together.
    ///             // There will NOT be interleaving of "before" and "after".
    ///             println!("before wait");
    ///             b.wait().await;
    ///             println!("after wait");
    ///         });
    ///     });
    /// }
    /// ```
    pub fn wait(&self) -> BarrierWait<'_> {
        BarrierWait::_new(BarrierWaitInner {
            barrier: self,
            lock: Some(self.state.lock()),
            evl: None,
            state: WaitState::Initial,
        })
    }

    /// Blocks the current thread until all tasks reach this point.
    ///
    /// Barriers are reusable after all tasks have synchronized, and can be used continuously.
    ///
    /// Returns a [`BarrierWaitResult`] indicating whether this task is the "leader", meaning the
    /// last task to call this method.
    ///
    /// # Blocking
    ///
    /// Rather than using asynchronous waiting, like the [`wait`][`Barrier::wait`] method,
    /// this method will block the current thread until the wait is complete.
    ///
    /// This method should not be used in an asynchronous context. It is intended to be
    /// used in a way that a barrier can be used in both asynchronous and synchronous contexts.
    /// Calling this method in an asynchronous context may result in a deadlock.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_lock::Barrier;
    /// use futures_lite::future;
    /// use std::sync::Arc;
    /// use std::thread;
    ///
    /// let barrier = Arc::new(Barrier::new(5));
    ///
    /// for _ in 0..5 {
    ///     let b = barrier.clone();
    ///     thread::spawn(move || {
    ///         // The same messages will be printed together.
    ///         // There will NOT be interleaving of "before" and "after".
    ///         println!("before wait");
    ///         b.wait_blocking();
    ///         println!("after wait");
    ///     });
    /// }
    /// # // Wait for threads to stop.
    /// # std::thread::sleep(std::time::Duration::from_secs(1));
    /// ```
    #[cfg(all(feature = "std", not(target_family = "wasm")))]
    pub fn wait_blocking(&self) -> BarrierWaitResult {
        self.wait().wait()
    }
}

easy_wrapper! {
    /// The future returned by [`Barrier::wait()`].
    pub struct BarrierWait<'a>(BarrierWaitInner<'a> => BarrierWaitResult);
    #[cfg(all(feature = "std", not(target_family = "wasm")))]
    pub(crate) wait();
}

pin_project_lite::pin_project! {
    /// The future returned by [`Barrier::wait()`].
    struct BarrierWaitInner<'a> {
        // The barrier to wait on.
        barrier: &'a Barrier,

        // The ongoing mutex lock operation we are blocking on.
        #[pin]
        lock: Option<Lock<'a, State>>,

        // An event listener for the `barrier.event` event.
        evl: Option<EventListener>,

        // The current state of the future.
        state: WaitState,
    }
}

impl fmt::Debug for BarrierWait<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("BarrierWait { .. }")
    }
}

enum WaitState {
    /// We are getting the original values of the state.
    Initial,

    /// We are waiting for the listener to complete.
    Waiting { local_gen: u64 },

    /// Waiting to re-acquire the lock to check the state again.
    Reacquiring { local_gen: u64 },
}

impl EventListenerFuture for BarrierWaitInner<'_> {
    type Output = BarrierWaitResult;

    fn poll_with_strategy<'a, S: Strategy<'a>>(
        self: Pin<&mut Self>,
        strategy: &mut S,
        cx: &mut S::Context,
    ) -> Poll<Self::Output> {
        let mut this = self.project();

        loop {
            match this.state {
                WaitState::Initial => {
                    // See if the lock is ready yet.
                    let mut state = ready!(this
                        .lock
                        .as_mut()
                        .as_pin_mut()
                        .unwrap()
                        .poll_with_strategy(strategy, cx));
                    this.lock.as_mut().set(None);

                    let local_gen = state.generation_id;
                    state.count += 1;

                    if state.count < this.barrier.n {
                        // We need to wait for the event.
                        *this.evl = Some(this.barrier.event.listen());
                        *this.state = WaitState::Waiting { local_gen };
                    } else {
                        // We are the last one.
                        state.count = 0;
                        state.generation_id = state.generation_id.wrapping_add(1);
                        this.barrier.event.notify(core::usize::MAX);
                        return Poll::Ready(BarrierWaitResult { is_leader: true });
                    }
                }

                WaitState::Waiting { local_gen } => {
                    ready!(strategy.poll(this.evl, cx));

                    // We are now re-acquiring the mutex.
                    this.lock.as_mut().set(Some(this.barrier.state.lock()));
                    *this.state = WaitState::Reacquiring {
                        local_gen: *local_gen,
                    };
                }

                WaitState::Reacquiring { local_gen } => {
                    // Acquire the local state again.
                    let state = ready!(this
                        .lock
                        .as_mut()
                        .as_pin_mut()
                        .unwrap()
                        .poll_with_strategy(strategy, cx));
                    this.lock.set(None);

                    if *local_gen == state.generation_id && state.count < this.barrier.n {
                        // We need to wait for the event again.
                        *this.evl = Some(this.barrier.event.listen());
                        *this.state = WaitState::Waiting {
                            local_gen: *local_gen,
                        };
                    } else {
                        // We are ready, but not the leader.
                        return Poll::Ready(BarrierWaitResult { is_leader: false });
                    }
                }
            }
        }
    }
}

/// Returned by [`Barrier::wait()`] when all tasks have called it.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::Barrier;
///
/// let barrier = Barrier::new(1);
/// let barrier_wait_result = barrier.wait().await;
/// # });
/// ```
#[derive(Debug, Clone)]
pub struct BarrierWaitResult {
    is_leader: bool,
}

impl BarrierWaitResult {
    /// Returns `true` if this task was the last to call to [`Barrier::wait()`].
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::Barrier;
    /// use futures_lite::future;
    ///
    /// let barrier = Barrier::new(2);
    /// let (a, b) = future::zip(barrier.wait(), barrier.wait()).await;
    /// assert_eq!(a.is_leader(), false);
    /// assert_eq!(b.is_leader(), true);
    /// # });
    /// ```
    pub fn is_leader(&self) -> bool {
        self.is_leader
    }
}