concurrent_queue/
unbounded.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
use alloc::boxed::Box;
use core::mem::MaybeUninit;
use core::ptr;

use crossbeam_utils::CachePadded;

use crate::const_fn;
use crate::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
use crate::sync::cell::UnsafeCell;
#[allow(unused_imports)]
use crate::sync::prelude::*;
use crate::{busy_wait, PopError, PushError};

// Bits indicating the state of a slot:
// * If a value has been written into the slot, `WRITE` is set.
// * If a value has been read from the slot, `READ` is set.
// * If the block is being destroyed, `DESTROY` is set.
const WRITE: usize = 1;
const READ: usize = 2;
const DESTROY: usize = 4;

// Each block covers one "lap" of indices.
const LAP: usize = 32;
// The maximum number of items a block can hold.
const BLOCK_CAP: usize = LAP - 1;
// How many lower bits are reserved for metadata.
const SHIFT: usize = 1;
// Has two different purposes:
// * If set in head, indicates that the block is not the last one.
// * If set in tail, indicates that the queue is closed.
const MARK_BIT: usize = 1;

/// A slot in a block.
struct Slot<T> {
    /// The value.
    value: UnsafeCell<MaybeUninit<T>>,

    /// The state of the slot.
    state: AtomicUsize,
}

impl<T> Slot<T> {
    #[cfg(not(loom))]
    const UNINIT: Slot<T> = Slot {
        value: UnsafeCell::new(MaybeUninit::uninit()),
        state: AtomicUsize::new(0),
    };

    #[cfg(not(loom))]
    fn uninit_block() -> [Slot<T>; BLOCK_CAP] {
        [Self::UNINIT; BLOCK_CAP]
    }

    #[cfg(loom)]
    fn uninit_block() -> [Slot<T>; BLOCK_CAP] {
        // Repeat this expression 31 times.
        // Update if we change BLOCK_CAP
        macro_rules! repeat_31 {
            ($e: expr) => {
                [
                    $e, $e, $e, $e, $e, $e, $e, $e, $e, $e, $e, $e, $e, $e, $e, $e, $e, $e, $e, $e,
                    $e, $e, $e, $e, $e, $e, $e, $e, $e, $e, $e,
                ]
            };
        }

        repeat_31!(Slot {
            value: UnsafeCell::new(MaybeUninit::uninit()),
            state: AtomicUsize::new(0),
        })
    }

    /// Waits until a value is written into the slot.
    fn wait_write(&self) {
        while self.state.load(Ordering::Acquire) & WRITE == 0 {
            busy_wait();
        }
    }
}

/// A block in a linked list.
///
/// Each block in the list can hold up to `BLOCK_CAP` values.
struct Block<T> {
    /// The next block in the linked list.
    next: AtomicPtr<Block<T>>,

    /// Slots for values.
    slots: [Slot<T>; BLOCK_CAP],
}

impl<T> Block<T> {
    /// Creates an empty block.
    fn new() -> Block<T> {
        Block {
            next: AtomicPtr::new(ptr::null_mut()),
            slots: Slot::uninit_block(),
        }
    }

    /// Waits until the next pointer is set.
    fn wait_next(&self) -> *mut Block<T> {
        loop {
            let next = self.next.load(Ordering::Acquire);
            if !next.is_null() {
                return next;
            }
            busy_wait();
        }
    }

    /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block.
    unsafe fn destroy(this: *mut Block<T>, start: usize) {
        // It is not necessary to set the `DESTROY` bit in the last slot because that slot has
        // begun destruction of the block.
        for i in start..BLOCK_CAP - 1 {
            let slot = (*this).slots.get_unchecked(i);

            // Mark the `DESTROY` bit if a thread is still using the slot.
            if slot.state.load(Ordering::Acquire) & READ == 0
                && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0
            {
                // If a thread is still using the slot, it will continue destruction of the block.
                return;
            }
        }

        // No thread is using the block, now it is safe to destroy it.
        drop(Box::from_raw(this));
    }
}

/// A position in a queue.
struct Position<T> {
    /// The index in the queue.
    index: AtomicUsize,

    /// The block in the linked list.
    block: AtomicPtr<Block<T>>,
}

/// An unbounded queue.
pub struct Unbounded<T> {
    /// The head of the queue.
    head: CachePadded<Position<T>>,

    /// The tail of the queue.
    tail: CachePadded<Position<T>>,
}

impl<T> Unbounded<T> {
    const_fn!(
        const_if: #[cfg(not(loom))];
        /// Creates a new unbounded queue.
        pub const fn new() -> Unbounded<T> {
            Unbounded {
                head: CachePadded::new(Position {
                    block: AtomicPtr::new(ptr::null_mut()),
                    index: AtomicUsize::new(0),
                }),
                tail: CachePadded::new(Position {
                    block: AtomicPtr::new(ptr::null_mut()),
                    index: AtomicUsize::new(0),
                }),
            }
        }
    );

    /// Pushes an item into the queue.
    pub fn push(&self, value: T) -> Result<(), PushError<T>> {
        let mut tail = self.tail.index.load(Ordering::Acquire);
        let mut block = self.tail.block.load(Ordering::Acquire);
        let mut next_block = None;

        loop {
            // Check if the queue is closed.
            if tail & MARK_BIT != 0 {
                return Err(PushError::Closed(value));
            }

            // Calculate the offset of the index into the block.
            let offset = (tail >> SHIFT) % LAP;

            // If we reached the end of the block, wait until the next one is installed.
            if offset == BLOCK_CAP {
                busy_wait();
                tail = self.tail.index.load(Ordering::Acquire);
                block = self.tail.block.load(Ordering::Acquire);
                continue;
            }

            // If we're going to have to install the next block, allocate it in advance in order to
            // make the wait for other threads as short as possible.
            if offset + 1 == BLOCK_CAP && next_block.is_none() {
                next_block = Some(Box::new(Block::<T>::new()));
            }

            // If this is the first value to be pushed into the queue, we need to allocate the
            // first block and install it.
            if block.is_null() {
                let new = Box::into_raw(Box::new(Block::<T>::new()));

                if self
                    .tail
                    .block
                    .compare_exchange(block, new, Ordering::Release, Ordering::Relaxed)
                    .is_ok()
                {
                    self.head.block.store(new, Ordering::Release);
                    block = new;
                } else {
                    next_block = unsafe { Some(Box::from_raw(new)) };
                    tail = self.tail.index.load(Ordering::Acquire);
                    block = self.tail.block.load(Ordering::Acquire);
                    continue;
                }
            }

            let new_tail = tail + (1 << SHIFT);

            // Try advancing the tail forward.
            match self.tail.index.compare_exchange_weak(
                tail,
                new_tail,
                Ordering::SeqCst,
                Ordering::Acquire,
            ) {
                Ok(_) => unsafe {
                    // If we've reached the end of the block, install the next one.
                    if offset + 1 == BLOCK_CAP {
                        let next_block = Box::into_raw(next_block.unwrap());
                        self.tail.block.store(next_block, Ordering::Release);
                        self.tail.index.fetch_add(1 << SHIFT, Ordering::Release);
                        (*block).next.store(next_block, Ordering::Release);
                    }

                    // Write the value into the slot.
                    let slot = (*block).slots.get_unchecked(offset);
                    slot.value.with_mut(|slot| {
                        slot.write(MaybeUninit::new(value));
                    });
                    slot.state.fetch_or(WRITE, Ordering::Release);
                    return Ok(());
                },
                Err(t) => {
                    tail = t;
                    block = self.tail.block.load(Ordering::Acquire);
                }
            }
        }
    }

    /// Pops an item from the queue.
    pub fn pop(&self) -> Result<T, PopError> {
        let mut head = self.head.index.load(Ordering::Acquire);
        let mut block = self.head.block.load(Ordering::Acquire);

        loop {
            // Calculate the offset of the index into the block.
            let offset = (head >> SHIFT) % LAP;

            // If we reached the end of the block, wait until the next one is installed.
            if offset == BLOCK_CAP {
                busy_wait();
                head = self.head.index.load(Ordering::Acquire);
                block = self.head.block.load(Ordering::Acquire);
                continue;
            }

            let mut new_head = head + (1 << SHIFT);

            if new_head & MARK_BIT == 0 {
                crate::full_fence();
                let tail = self.tail.index.load(Ordering::Relaxed);

                // If the tail equals the head, that means the queue is empty.
                if head >> SHIFT == tail >> SHIFT {
                    // Check if the queue is closed.
                    if tail & MARK_BIT != 0 {
                        return Err(PopError::Closed);
                    } else {
                        return Err(PopError::Empty);
                    }
                }

                // If head and tail are not in the same block, set `MARK_BIT` in head.
                if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
                    new_head |= MARK_BIT;
                }
            }

            // The block can be null here only if the first push operation is in progress.
            if block.is_null() {
                busy_wait();
                head = self.head.index.load(Ordering::Acquire);
                block = self.head.block.load(Ordering::Acquire);
                continue;
            }

            // Try moving the head index forward.
            match self.head.index.compare_exchange_weak(
                head,
                new_head,
                Ordering::SeqCst,
                Ordering::Acquire,
            ) {
                Ok(_) => unsafe {
                    // If we've reached the end of the block, move to the next one.
                    if offset + 1 == BLOCK_CAP {
                        let next = (*block).wait_next();
                        let mut next_index = (new_head & !MARK_BIT).wrapping_add(1 << SHIFT);
                        if !(*next).next.load(Ordering::Relaxed).is_null() {
                            next_index |= MARK_BIT;
                        }

                        self.head.block.store(next, Ordering::Release);
                        self.head.index.store(next_index, Ordering::Release);
                    }

                    // Read the value.
                    let slot = (*block).slots.get_unchecked(offset);
                    slot.wait_write();
                    let value = slot.value.with_mut(|slot| slot.read().assume_init());

                    // Destroy the block if we've reached the end, or if another thread wanted to
                    // destroy but couldn't because we were busy reading from the slot.
                    if offset + 1 == BLOCK_CAP {
                        Block::destroy(block, 0);
                    } else if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
                        Block::destroy(block, offset + 1);
                    }

                    return Ok(value);
                },
                Err(h) => {
                    head = h;
                    block = self.head.block.load(Ordering::Acquire);
                }
            }
        }
    }

    /// Returns the number of items in the queue.
    pub fn len(&self) -> usize {
        loop {
            // Load the tail index, then load the head index.
            let mut tail = self.tail.index.load(Ordering::SeqCst);
            let mut head = self.head.index.load(Ordering::SeqCst);

            // If the tail index didn't change, we've got consistent indices to work with.
            if self.tail.index.load(Ordering::SeqCst) == tail {
                // Erase the lower bits.
                tail &= !((1 << SHIFT) - 1);
                head &= !((1 << SHIFT) - 1);

                // Fix up indices if they fall onto block ends.
                if (tail >> SHIFT) & (LAP - 1) == LAP - 1 {
                    tail = tail.wrapping_add(1 << SHIFT);
                }
                if (head >> SHIFT) & (LAP - 1) == LAP - 1 {
                    head = head.wrapping_add(1 << SHIFT);
                }

                // Rotate indices so that head falls into the first block.
                let lap = (head >> SHIFT) / LAP;
                tail = tail.wrapping_sub((lap * LAP) << SHIFT);
                head = head.wrapping_sub((lap * LAP) << SHIFT);

                // Remove the lower bits.
                tail >>= SHIFT;
                head >>= SHIFT;

                // Return the difference minus the number of blocks between tail and head.
                return tail - head - tail / LAP;
            }
        }
    }

    /// Returns `true` if the queue is empty.
    pub fn is_empty(&self) -> bool {
        let head = self.head.index.load(Ordering::SeqCst);
        let tail = self.tail.index.load(Ordering::SeqCst);
        head >> SHIFT == tail >> SHIFT
    }

    /// Returns `true` if the queue is full.
    pub fn is_full(&self) -> bool {
        false
    }

    /// Closes the queue.
    ///
    /// Returns `true` if this call closed the queue.
    pub fn close(&self) -> bool {
        let tail = self.tail.index.fetch_or(MARK_BIT, Ordering::SeqCst);
        tail & MARK_BIT == 0
    }

    /// Returns `true` if the queue is closed.
    pub fn is_closed(&self) -> bool {
        self.tail.index.load(Ordering::SeqCst) & MARK_BIT != 0
    }
}

impl<T> Drop for Unbounded<T> {
    fn drop(&mut self) {
        let Self { head, tail } = self;
        let Position { index: head, block } = &mut **head;

        head.with_mut(|&mut mut head| {
            tail.index.with_mut(|&mut mut tail| {
                // Erase the lower bits.
                head &= !((1 << SHIFT) - 1);
                tail &= !((1 << SHIFT) - 1);

                unsafe {
                    // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks.
                    while head != tail {
                        let offset = (head >> SHIFT) % LAP;

                        if offset < BLOCK_CAP {
                            // Drop the value in the slot.
                            block.with_mut(|block| {
                                let slot = (**block).slots.get_unchecked(offset);
                                slot.value.with_mut(|slot| {
                                    let value = &mut *slot;
                                    value.as_mut_ptr().drop_in_place();
                                });
                            });
                        } else {
                            // Deallocate the block and move to the next one.
                            block.with_mut(|block| {
                                let next_block = (**block).next.with_mut(|next| *next);
                                drop(Box::from_raw(*block));
                                *block = next_block;
                            });
                        }

                        head = head.wrapping_add(1 << SHIFT);
                    }

                    // Deallocate the last remaining block.
                    block.with_mut(|block| {
                        if !block.is_null() {
                            drop(Box::from_raw(*block));
                        }
                    });
                }
            });
        });
    }
}