async_lock/mutex.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
use core::borrow::Borrow;
use core::cell::UnsafeCell;
use core::fmt;
use core::marker::{PhantomData, PhantomPinned};
use core::ops::{Deref, DerefMut};
use core::pin::Pin;
use core::task::Poll;
use core::usize;
use alloc::sync::Arc;
// We don't use loom::UnsafeCell as that doesn't work with the Mutex API.
use crate::sync::atomic::{AtomicUsize, Ordering};
#[cfg(all(feature = "std", not(target_family = "wasm")))]
use std::time::{Duration, Instant};
use event_listener::{Event, EventListener};
use event_listener_strategy::{easy_wrapper, EventListenerFuture};
/// An async mutex.
///
/// The locking mechanism uses eventual fairness to ensure locking will be fair on average without
/// sacrificing performance. This is done by forcing a fair lock whenever a lock operation is
/// starved for longer than 0.5 milliseconds.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::Mutex;
///
/// let m = Mutex::new(1);
///
/// let mut guard = m.lock().await;
/// *guard = 2;
///
/// assert!(m.try_lock().is_none());
/// drop(guard);
/// assert_eq!(*m.try_lock().unwrap(), 2);
/// # })
/// ```
pub struct Mutex<T: ?Sized> {
/// Current state of the mutex.
///
/// The least significant bit is set to 1 if the mutex is locked.
/// The other bits hold the number of starved lock operations.
state: AtomicUsize,
/// Lock operations waiting for the mutex to be released.
lock_ops: Event,
/// The value inside the mutex.
data: UnsafeCell<T>,
}
unsafe impl<T: Send + ?Sized> Send for Mutex<T> {}
unsafe impl<T: Send + ?Sized> Sync for Mutex<T> {}
impl<T> Mutex<T> {
const_fn! {
const_if: #[cfg(not(loom))];
/// Creates a new async mutex.
///
/// # Examples
///
/// ```
/// use async_lock::Mutex;
///
/// let mutex = Mutex::new(0);
/// ```
pub const fn new(data: T) -> Mutex<T> {
Mutex {
state: AtomicUsize::new(0),
lock_ops: Event::new(),
data: UnsafeCell::new(data),
}
}
}
/// Consumes the mutex, returning the underlying data.
///
/// # Examples
///
/// ```
/// use async_lock::Mutex;
///
/// let mutex = Mutex::new(10);
/// assert_eq!(mutex.into_inner(), 10);
/// ```
pub fn into_inner(self) -> T {
self.data.into_inner()
}
}
impl<T: ?Sized> Mutex<T> {
/// Acquires the mutex.
///
/// Returns a guard that releases the mutex when dropped.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::Mutex;
///
/// let mutex = Mutex::new(10);
/// let guard = mutex.lock().await;
/// assert_eq!(*guard, 10);
/// # })
/// ```
#[inline]
pub fn lock(&self) -> Lock<'_, T> {
Lock::_new(LockInner {
mutex: self,
acquire_slow: None,
})
}
/// Acquires the mutex using the blocking strategy.
///
/// Returns a guard that releases the mutex when dropped.
///
/// # Blocking
///
/// Rather than using asynchronous waiting, like the [`lock`][Mutex::lock] method,
/// this method will block the current thread until the lock is acquired.
///
/// This method should not be used in an asynchronous context. It is intended to be
/// used in a way that a mutex can be used in both asynchronous and synchronous contexts.
/// Calling this method in an asynchronous context may result in a deadlock.
///
/// # Examples
///
/// ```
/// use async_lock::Mutex;
///
/// let mutex = Mutex::new(10);
/// let guard = mutex.lock_blocking();
/// assert_eq!(*guard, 10);
/// ```
#[cfg(all(feature = "std", not(target_family = "wasm")))]
#[inline]
pub fn lock_blocking(&self) -> MutexGuard<'_, T> {
self.lock().wait()
}
/// Attempts to acquire the mutex.
///
/// If the mutex could not be acquired at this time, then [`None`] is returned. Otherwise, a
/// guard is returned that releases the mutex when dropped.
///
/// # Examples
///
/// ```
/// use async_lock::Mutex;
///
/// let mutex = Mutex::new(10);
/// if let Some(guard) = mutex.try_lock() {
/// assert_eq!(*guard, 10);
/// }
/// # ;
/// ```
#[inline]
pub fn try_lock(&self) -> Option<MutexGuard<'_, T>> {
if self
.state
.compare_exchange(0, 1, Ordering::Acquire, Ordering::Acquire)
.is_ok()
{
Some(MutexGuard(self))
} else {
None
}
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the mutex mutably, no actual locking takes place -- the mutable
/// borrow statically guarantees the mutex is not already acquired.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::Mutex;
///
/// let mut mutex = Mutex::new(0);
/// *mutex.get_mut() = 10;
/// assert_eq!(*mutex.lock().await, 10);
/// # })
/// ```
pub fn get_mut(&mut self) -> &mut T {
self.data.get_mut()
}
/// Unlocks the mutex directly.
///
/// # Safety
///
/// This function is intended to be used only in the case where the mutex is locked,
/// and the guard is subsequently forgotten. Calling this while you don't hold a lock
/// on the mutex will likely lead to UB.
pub(crate) unsafe fn unlock_unchecked(&self) {
// Remove the last bit and notify a waiting lock operation.
self.state.fetch_sub(1, Ordering::Release);
self.lock_ops.notify(1);
}
}
impl<T: ?Sized> Mutex<T> {
/// Acquires the mutex and clones a reference to it.
///
/// Returns an owned guard that releases the mutex when dropped.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::Mutex;
/// use std::sync::Arc;
///
/// let mutex = Arc::new(Mutex::new(10));
/// let guard = mutex.lock_arc().await;
/// assert_eq!(*guard, 10);
/// # })
/// ```
#[inline]
pub fn lock_arc(self: &Arc<Self>) -> LockArc<T> {
LockArc::_new(LockArcInnards::Unpolled {
mutex: Some(self.clone()),
})
}
/// Acquires the mutex and clones a reference to it using the blocking strategy.
///
/// Returns an owned guard that releases the mutex when dropped.
///
/// # Blocking
///
/// Rather than using asynchronous waiting, like the [`lock_arc`][Mutex::lock_arc] method,
/// this method will block the current thread until the lock is acquired.
///
/// This method should not be used in an asynchronous context. It is intended to be
/// used in a way that a mutex can be used in both asynchronous and synchronous contexts.
/// Calling this method in an asynchronous context may result in a deadlock.
///
/// # Examples
///
/// ```
/// use async_lock::Mutex;
/// use std::sync::Arc;
///
/// let mutex = Arc::new(Mutex::new(10));
/// let guard = mutex.lock_arc_blocking();
/// assert_eq!(*guard, 10);
/// ```
#[cfg(all(feature = "std", not(target_family = "wasm")))]
#[inline]
pub fn lock_arc_blocking(self: &Arc<Self>) -> MutexGuardArc<T> {
self.lock_arc().wait()
}
/// Attempts to acquire the mutex and clone a reference to it.
///
/// If the mutex could not be acquired at this time, then [`None`] is returned. Otherwise, an
/// owned guard is returned that releases the mutex when dropped.
///
/// # Examples
///
/// ```
/// use async_lock::Mutex;
/// use std::sync::Arc;
///
/// let mutex = Arc::new(Mutex::new(10));
/// if let Some(guard) = mutex.try_lock() {
/// assert_eq!(*guard, 10);
/// }
/// # ;
/// ```
#[inline]
pub fn try_lock_arc(self: &Arc<Self>) -> Option<MutexGuardArc<T>> {
if self
.state
.compare_exchange(0, 1, Ordering::Acquire, Ordering::Acquire)
.is_ok()
{
Some(MutexGuardArc(self.clone()))
} else {
None
}
}
}
impl<T: fmt::Debug + ?Sized> fmt::Debug for Mutex<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
struct Locked;
impl fmt::Debug for Locked {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("<locked>")
}
}
match self.try_lock() {
None => f.debug_struct("Mutex").field("data", &Locked).finish(),
Some(guard) => f.debug_struct("Mutex").field("data", &&*guard).finish(),
}
}
}
impl<T> From<T> for Mutex<T> {
fn from(val: T) -> Mutex<T> {
Mutex::new(val)
}
}
impl<T: Default + ?Sized> Default for Mutex<T> {
fn default() -> Mutex<T> {
Mutex::new(Default::default())
}
}
easy_wrapper! {
/// The future returned by [`Mutex::lock`].
pub struct Lock<'a, T: ?Sized>(LockInner<'a, T> => MutexGuard<'a, T>);
#[cfg(all(feature = "std", not(target_family = "wasm")))]
pub(crate) wait();
}
pin_project_lite::pin_project! {
/// Inner future for acquiring the mutex.
struct LockInner<'a, T: ?Sized> {
// Reference to the mutex.
mutex: &'a Mutex<T>,
// The future that waits for the mutex to become available.
#[pin]
acquire_slow: Option<AcquireSlow<&'a Mutex<T>, T>>,
}
}
unsafe impl<T: Send + ?Sized> Send for Lock<'_, T> {}
unsafe impl<T: Sync + ?Sized> Sync for Lock<'_, T> {}
impl<T: ?Sized> fmt::Debug for Lock<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("Lock { .. }")
}
}
impl<'a, T: ?Sized> EventListenerFuture for LockInner<'a, T> {
type Output = MutexGuard<'a, T>;
#[inline]
fn poll_with_strategy<'x, S: event_listener_strategy::Strategy<'x>>(
self: Pin<&mut Self>,
strategy: &mut S,
context: &mut S::Context,
) -> Poll<Self::Output> {
let mut this = self.project();
// This may seem weird, but the borrow checker complains otherwise.
if this.acquire_slow.is_none() {
match this.mutex.try_lock() {
Some(guard) => return Poll::Ready(guard),
None => {
this.acquire_slow.set(Some(AcquireSlow::new(this.mutex)));
}
}
}
ready!(this
.acquire_slow
.as_pin_mut()
.unwrap()
.poll_with_strategy(strategy, context));
Poll::Ready(MutexGuard(this.mutex))
}
}
easy_wrapper! {
/// The future returned by [`Mutex::lock_arc`].
pub struct LockArc<T: ?Sized>(LockArcInnards<T> => MutexGuardArc<T>);
#[cfg(all(feature = "std", not(target_family = "wasm")))]
pub(crate) wait();
}
pin_project_lite::pin_project! {
#[project = LockArcInnardsProj]
enum LockArcInnards<T: ?Sized> {
/// We have not tried to poll the fast path yet.
Unpolled { mutex: Option<Arc<Mutex<T>>> },
/// We are acquiring the mutex through the slow path.
AcquireSlow {
#[pin]
inner: AcquireSlow<Arc<Mutex<T>>, T>
},
}
}
unsafe impl<T: Send + ?Sized> Send for LockArc<T> {}
unsafe impl<T: Sync + ?Sized> Sync for LockArc<T> {}
impl<T: ?Sized> fmt::Debug for LockArcInnards<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("LockArc { .. }")
}
}
impl<T: ?Sized> EventListenerFuture for LockArcInnards<T> {
type Output = MutexGuardArc<T>;
fn poll_with_strategy<'a, S: event_listener_strategy::Strategy<'a>>(
mut self: Pin<&mut Self>,
strategy: &mut S,
context: &mut S::Context,
) -> Poll<Self::Output> {
// Set the inner future if needed.
if let LockArcInnardsProj::Unpolled { mutex } = self.as_mut().project() {
let mutex = mutex.take().expect("mutex taken more than once");
// Try the fast path before trying to register slowly.
if let Some(guard) = mutex.try_lock_arc() {
return Poll::Ready(guard);
}
// Set the inner future to the slow acquire path.
self.as_mut().set(LockArcInnards::AcquireSlow {
inner: AcquireSlow::new(mutex),
});
}
// Poll the inner future.
let value = match self.project() {
LockArcInnardsProj::AcquireSlow { inner } => {
ready!(inner.poll_with_strategy(strategy, context))
}
_ => unreachable!(),
};
Poll::Ready(MutexGuardArc(value))
}
}
pin_project_lite::pin_project! {
/// Future for acquiring the mutex slowly.
struct AcquireSlow<B: Borrow<Mutex<T>>, T: ?Sized> {
// Reference to the mutex.
mutex: Option<B>,
// The event listener waiting on the mutex.
listener: Option<EventListener>,
// The point at which the mutex lock was started.
start: Start,
// This lock operation is starving.
starved: bool,
// Capture the `T` lifetime.
#[pin]
_marker: PhantomData<T>,
// Keeping this type `!Unpin` enables future optimizations.
#[pin]
_pin: PhantomPinned
}
impl<T: ?Sized, B: Borrow<Mutex<T>>> PinnedDrop for AcquireSlow<B, T> {
fn drop(this: Pin<&mut Self>) {
// Make sure the starvation counter is decremented.
this.take_mutex();
}
}
}
/// `pin_project_lite` doesn't support `#[cfg]` yet, so we have to do this manually.
struct Start {
#[cfg(all(feature = "std", not(target_family = "wasm")))]
start: Option<Instant>,
}
impl<T: ?Sized, B: Borrow<Mutex<T>>> AcquireSlow<B, T> {
/// Create a new `AcquireSlow` future.
#[cold]
fn new(mutex: B) -> Self {
AcquireSlow {
mutex: Some(mutex),
listener: None,
start: Start {
#[cfg(all(feature = "std", not(target_family = "wasm")))]
start: None,
},
starved: false,
_marker: PhantomData,
_pin: PhantomPinned,
}
}
/// Take the mutex reference out, decrementing the counter if necessary.
fn take_mutex(self: Pin<&mut Self>) -> Option<B> {
let this = self.project();
let mutex = this.mutex.take();
if *this.starved {
if let Some(mutex) = mutex.as_ref() {
// Decrement this counter before we exit.
mutex.borrow().state.fetch_sub(2, Ordering::Release);
}
}
mutex
}
}
impl<T: ?Sized, B: Unpin + Borrow<Mutex<T>>> EventListenerFuture for AcquireSlow<B, T> {
type Output = B;
#[cold]
fn poll_with_strategy<'a, S: event_listener_strategy::Strategy<'a>>(
mut self: Pin<&mut Self>,
strategy: &mut S,
context: &mut S::Context,
) -> Poll<Self::Output> {
let this = self.as_mut().project();
#[cfg(all(feature = "std", not(target_family = "wasm")))]
let start = *this.start.start.get_or_insert_with(Instant::now);
let mutex = Borrow::<Mutex<T>>::borrow(
this.mutex.as_ref().expect("future polled after completion"),
);
// Only use this hot loop if we aren't currently starved.
if !*this.starved {
loop {
// Start listening for events.
if this.listener.is_none() {
*this.listener = Some(mutex.lock_ops.listen());
// Try locking if nobody is being starved.
match mutex
.state
.compare_exchange(0, 1, Ordering::Acquire, Ordering::Acquire)
.unwrap_or_else(|x| x)
{
// Lock acquired!
0 => return Poll::Ready(self.take_mutex().unwrap()),
// Lock is held and nobody is starved.
1 => {}
// Somebody is starved.
_ => break,
}
} else {
ready!(strategy.poll(this.listener, context));
// Try locking if nobody is being starved.
match mutex
.state
.compare_exchange(0, 1, Ordering::Acquire, Ordering::Acquire)
.unwrap_or_else(|x| x)
{
// Lock acquired!
0 => return Poll::Ready(self.take_mutex().unwrap()),
// Lock is held and nobody is starved.
1 => {}
// Somebody is starved.
_ => {
// Notify the first listener in line because we probably received a
// notification that was meant for a starved task.
mutex.lock_ops.notify(1);
break;
}
}
// If waiting for too long, fall back to a fairer locking strategy that will prevent
// newer lock operations from starving us forever.
#[cfg(all(feature = "std", not(target_family = "wasm")))]
if start.elapsed() > Duration::from_micros(500) {
break;
}
}
}
// Increment the number of starved lock operations.
if mutex.state.fetch_add(2, Ordering::Release) > usize::MAX / 2 {
// In case of potential overflow, abort.
crate::abort();
}
// Indicate that we are now starving and will use a fairer locking strategy.
*this.starved = true;
}
// Fairer locking loop.
loop {
if this.listener.is_none() {
// Start listening for events.
*this.listener = Some(mutex.lock_ops.listen());
// Try locking if nobody else is being starved.
match mutex
.state
.compare_exchange(2, 2 | 1, Ordering::Acquire, Ordering::Acquire)
.unwrap_or_else(|x| x)
{
// Lock acquired!
2 => return Poll::Ready(self.take_mutex().unwrap()),
// Lock is held by someone.
s if s % 2 == 1 => {}
// Lock is available.
_ => {
// Be fair: notify the first listener and then go wait in line.
mutex.lock_ops.notify(1);
}
}
} else {
// Wait for a notification.
ready!(strategy.poll(this.listener, context));
// Try acquiring the lock without waiting for others.
if mutex.state.fetch_or(1, Ordering::Acquire) % 2 == 0 {
return Poll::Ready(self.take_mutex().unwrap());
}
}
}
}
}
/// A guard that releases the mutex when dropped.
#[clippy::has_significant_drop]
pub struct MutexGuard<'a, T: ?Sized>(&'a Mutex<T>);
unsafe impl<T: Send + ?Sized> Send for MutexGuard<'_, T> {}
unsafe impl<T: Sync + ?Sized> Sync for MutexGuard<'_, T> {}
impl<'a, T: ?Sized> MutexGuard<'a, T> {
/// Returns a reference to the mutex a guard came from.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::{Mutex, MutexGuard};
///
/// let mutex = Mutex::new(10i32);
/// let guard = mutex.lock().await;
/// dbg!(MutexGuard::source(&guard));
/// # })
/// ```
pub fn source(guard: &MutexGuard<'a, T>) -> &'a Mutex<T> {
guard.0
}
}
impl<T: ?Sized> Drop for MutexGuard<'_, T> {
#[inline]
fn drop(&mut self) {
// SAFETY: we are dropping the mutex guard, therefore unlocking the mutex.
unsafe {
self.0.unlock_unchecked();
}
}
}
impl<T: fmt::Debug + ?Sized> fmt::Debug for MutexGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: fmt::Display + ?Sized> fmt::Display for MutexGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<T: ?Sized> Deref for MutexGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.0.data.get() }
}
}
impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.0.data.get() }
}
}
/// An owned guard that releases the mutex when dropped.
#[clippy::has_significant_drop]
pub struct MutexGuardArc<T: ?Sized>(Arc<Mutex<T>>);
unsafe impl<T: Send + ?Sized> Send for MutexGuardArc<T> {}
unsafe impl<T: Sync + ?Sized> Sync for MutexGuardArc<T> {}
impl<T: ?Sized> MutexGuardArc<T> {
/// Returns a reference to the mutex a guard came from.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::{Mutex, MutexGuardArc};
/// use std::sync::Arc;
///
/// let mutex = Arc::new(Mutex::new(10i32));
/// let guard = mutex.lock_arc().await;
/// dbg!(MutexGuardArc::source(&guard));
/// # })
/// ```
pub fn source(guard: &Self) -> &Arc<Mutex<T>>
where
// Required because `MutexGuardArc` implements `Sync` regardless of whether `T` is `Send`,
// but this method allows dropping `T` from a different thead than it was created in.
T: Send,
{
&guard.0
}
}
impl<T: ?Sized> Drop for MutexGuardArc<T> {
#[inline]
fn drop(&mut self) {
// SAFETY: we are dropping the mutex guard, therefore unlocking the mutex.
unsafe {
self.0.unlock_unchecked();
}
}
}
impl<T: fmt::Debug + ?Sized> fmt::Debug for MutexGuardArc<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: fmt::Display + ?Sized> fmt::Display for MutexGuardArc<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<T: ?Sized> Deref for MutexGuardArc<T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.0.data.get() }
}
}
impl<T: ?Sized> DerefMut for MutexGuardArc<T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.0.data.get() }
}
}