1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
// Copyright 2015-2021 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

use super::{PublicExponent, PublicModulus, N, PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN};
use crate::{
    arithmetic::bigint,
    bits, cpu, error,
    io::{self, der, der_writer},
    limb::LIMB_BYTES,
};
use alloc::boxed::Box;

/// An RSA Public Key.
#[derive(Clone)]
pub struct PublicKey {
    n: PublicModulus,
    e: PublicExponent,
    serialized: Box<[u8]>,
}

derive_debug_self_as_ref_hex_bytes!(PublicKey);

impl PublicKey {
    pub(super) fn from_modulus_and_exponent(
        n: untrusted::Input,
        e: untrusted::Input,
        n_min_bits: bits::BitLength,
        n_max_bits: bits::BitLength,
        e_min_value: PublicExponent,
        cpu_features: cpu::Features,
    ) -> Result<Self, error::KeyRejected> {
        let n_bytes = n;
        let e_bytes = e;

        // This is an incomplete implementation of NIST SP800-56Br1 Section
        // 6.4.2.2, "Partial Public-Key Validation for RSA." That spec defers
        // to NIST SP800-89 Section 5.3.3, "(Explicit) Partial Public Key
        // Validation for RSA," "with the caveat that the length of the modulus
        // shall be a length that is specified in this Recommendation." In
        // SP800-89, two different sets of steps are given, one set numbered,
        // and one set lettered. TODO: Document this in the end-user
        // documentation for RSA keys.

        let n = PublicModulus::from_be_bytes(n, n_min_bits..=n_max_bits, cpu_features)?;

        let e = PublicExponent::from_be_bytes(e, e_min_value)?;

        // If `n` is less than `e` then somebody has probably accidentally swapped
        // them. The largest acceptable `e` is smaller than the smallest acceptable
        // `n`, so no additional checks need to be done.

        // XXX: Steps 4 & 5 / Steps d, e, & f are not implemented. This is also the
        // case in most other commonly-used crypto libraries.

        // TODO: Remove this re-parsing, and stop allocating this here.
        // Instead we should serialize on demand without allocation, from
        // `Modulus::be_bytes()` and `Exponent::be_bytes()`.
        let n_bytes = io::Positive::from_be_bytes(n_bytes)
            .map_err(|_: error::Unspecified| error::KeyRejected::unexpected_error())?;
        let e_bytes = io::Positive::from_be_bytes(e_bytes)
            .map_err(|_: error::Unspecified| error::KeyRejected::unexpected_error())?;
        let serialized = der_writer::write_all(der::Tag::Sequence, &|output| {
            der_writer::write_positive_integer(output, &n_bytes);
            der_writer::write_positive_integer(output, &e_bytes);
        });

        Ok(Self { n, e, serialized })
    }

    /// The length, in bytes, of the public modulus.
    ///
    /// The modulus length is rounded up to a whole number of bytes if its
    /// bit length isn't a multiple of 8.
    pub fn modulus_len(&self) -> usize {
        self.n().len_bits().as_usize_bytes_rounded_up()
    }

    /// The public modulus.
    #[inline]
    pub(super) fn n(&self) -> &PublicModulus {
        &self.n
    }

    /// The public exponent.
    #[inline]
    pub(super) fn e(&self) -> PublicExponent {
        self.e
    }

    /// Calculates base**e (mod n), filling the first part of `out_buffer` with
    /// the result.
    ///
    /// This is constant-time with respect to the value in `base` (only).
    ///
    /// The result will be a slice of the encoded bytes of the result within
    /// `out_buffer`, if successful.
    pub(super) fn exponentiate<'out>(
        &self,
        base: untrusted::Input,
        out_buffer: &'out mut [u8; PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN],
    ) -> Result<&'out [u8], error::Unspecified> {
        let n = &self.n.value();

        // The encoded value of the base must be the same length as the modulus,
        // in bytes.
        if base.len() != self.n.len_bits().as_usize_bytes_rounded_up() {
            return Err(error::Unspecified);
        }

        // RFC 8017 Section 5.2.2: RSAVP1.

        // Step 1.
        let s = bigint::Elem::from_be_bytes_padded(base, n)?;
        if s.is_zero() {
            return Err(error::Unspecified);
        }

        // Step 2.
        let m = self.exponentiate_elem(s);

        // Step 3.
        Ok(fill_be_bytes_n(m, self.n.len_bits(), out_buffer))
    }

    /// Calculates base**e (mod n).
    ///
    /// This is constant-time with respect to `base` only.
    pub(super) fn exponentiate_elem(&self, base: bigint::Elem<N>) -> bigint::Elem<N> {
        let n = self.n.value();

        let base = bigint::elem_mul(n.oneRR().as_ref(), base, n);
        // During RSA public key operations the exponent is almost always either
        // 65537 (0b10000000000000001) or 3 (0b11), both of which have a Hamming
        // weight of 2. The maximum bit length and maximum Hamming weight of the
        // exponent is bounded by the value of `PublicExponent::MAX`.
        bigint::elem_exp_vartime(base, self.e.value(), &n.as_partial()).into_unencoded(n)
    }
}

// XXX: Refactor `signature::KeyPair` to get rid of this.
impl AsRef<[u8]> for PublicKey {
    fn as_ref(&self) -> &[u8] {
        &self.serialized
    }
}

/// Returns the big-endian representation of `elem` that is
/// the same length as the minimal-length big-endian representation of
/// the modulus `n`.
///
/// `n_bits` must be the bit length of the public modulus `n`.
fn fill_be_bytes_n(
    elem: bigint::Elem<N>,
    n_bits: bits::BitLength,
    out: &mut [u8; PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN],
) -> &[u8] {
    let n_bytes = n_bits.as_usize_bytes_rounded_up();
    let n_bytes_padded = ((n_bytes + (LIMB_BYTES - 1)) / LIMB_BYTES) * LIMB_BYTES;
    let out = &mut out[..n_bytes_padded];
    elem.fill_be_bytes(out);
    let (padding, out) = out.split_at(n_bytes_padded - n_bytes);
    assert!(padding.iter().all(|&b| b == 0));
    out
}