1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
// Copyright 2017 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
use crate::{
arithmetic::{
limbs_from_hex,
montgomery::{Encoding, ProductEncoding},
},
limb::{Limb, LIMB_BITS},
};
use core::marker::PhantomData;
/// Elements of ℤ/mℤ for some modulus *m*. Elements are always fully reduced
/// with respect to *m*; i.e. the 0 <= x < m for every value x.
#[derive(Clone, Copy)]
pub struct Elem<M, E: Encoding> {
// XXX: pub
pub limbs: [Limb; MAX_LIMBS],
/// The modulus *m* for the ring ℤ/mℤ for which this element is a value.
pub m: PhantomData<M>,
/// The number of Montgomery factors that need to be canceled out from
/// `value` to get the actual value.
pub encoding: PhantomData<E>,
}
impl<M, E: Encoding> Elem<M, E> {
// There's no need to convert `value` to the Montgomery domain since
// 0 * R**2 (mod m) == 0, so neither the modulus nor the encoding are needed
// as inputs for constructing a zero-valued element.
pub fn zero() -> Self {
Self {
limbs: [0; MAX_LIMBS],
m: PhantomData,
encoding: PhantomData,
}
}
pub const fn from_hex(hex: &str) -> Self {
Elem {
limbs: limbs_from_hex(hex),
m: PhantomData,
encoding: PhantomData,
}
}
}
#[inline]
pub fn mul_mont<M, EA: Encoding, EB: Encoding>(
f: unsafe extern "C" fn(r: *mut Limb, a: *const Limb, b: *const Limb),
a: &Elem<M, EA>,
b: &Elem<M, EB>,
) -> Elem<M, <(EA, EB) as ProductEncoding>::Output>
where
(EA, EB): ProductEncoding,
{
binary_op(f, a, b)
}
// let r = f(a, b); return r;
#[inline]
pub fn binary_op<M, EA: Encoding, EB: Encoding, ER: Encoding>(
f: unsafe extern "C" fn(r: *mut Limb, a: *const Limb, b: *const Limb),
a: &Elem<M, EA>,
b: &Elem<M, EB>,
) -> Elem<M, ER> {
let mut r = Elem {
limbs: [0; MAX_LIMBS],
m: PhantomData,
encoding: PhantomData,
};
unsafe { f(r.limbs.as_mut_ptr(), a.limbs.as_ptr(), b.limbs.as_ptr()) }
r
}
// a := f(a, b);
#[inline]
pub fn binary_op_assign<M, EA: Encoding, EB: Encoding>(
f: unsafe extern "C" fn(r: *mut Limb, a: *const Limb, b: *const Limb),
a: &mut Elem<M, EA>,
b: &Elem<M, EB>,
) {
unsafe { f(a.limbs.as_mut_ptr(), a.limbs.as_ptr(), b.limbs.as_ptr()) }
}
// let r = f(a); return r;
#[inline]
pub fn unary_op<M, E: Encoding>(
f: unsafe extern "C" fn(r: *mut Limb, a: *const Limb),
a: &Elem<M, E>,
) -> Elem<M, E> {
let mut r = Elem {
limbs: [0; MAX_LIMBS],
m: PhantomData,
encoding: PhantomData,
};
unsafe { f(r.limbs.as_mut_ptr(), a.limbs.as_ptr()) }
r
}
// a := f(a);
#[inline]
pub fn unary_op_assign<M, E: Encoding>(
f: unsafe extern "C" fn(r: *mut Limb, a: *const Limb),
a: &mut Elem<M, E>,
) {
unsafe { f(a.limbs.as_mut_ptr(), a.limbs.as_ptr()) }
}
// a := f(a, a);
#[inline]
pub fn unary_op_from_binary_op_assign<M, E: Encoding>(
f: unsafe extern "C" fn(r: *mut Limb, a: *const Limb, b: *const Limb),
a: &mut Elem<M, E>,
) {
unsafe { f(a.limbs.as_mut_ptr(), a.limbs.as_ptr(), a.limbs.as_ptr()) }
}
pub const MAX_LIMBS: usize = (384 + (LIMB_BITS - 1)) / LIMB_BITS;