parking_lot/condvar.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use crate::mutex::MutexGuard;
use crate::raw_mutex::{RawMutex, TOKEN_HANDOFF, TOKEN_NORMAL};
use crate::{deadlock, util};
use core::{
fmt, ptr,
sync::atomic::{AtomicPtr, Ordering},
};
use lock_api::RawMutex as RawMutex_;
use parking_lot_core::{self, ParkResult, RequeueOp, UnparkResult, DEFAULT_PARK_TOKEN};
use std::ops::DerefMut;
use std::time::{Duration, Instant};
/// A type indicating whether a timed wait on a condition variable returned
/// due to a time out or not.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub struct WaitTimeoutResult(bool);
impl WaitTimeoutResult {
/// Returns whether the wait was known to have timed out.
#[inline]
pub fn timed_out(self) -> bool {
self.0
}
}
/// A Condition Variable
///
/// Condition variables represent the ability to block a thread such that it
/// consumes no CPU time while waiting for an event to occur. Condition
/// variables are typically associated with a boolean predicate (a condition)
/// and a mutex. The predicate is always verified inside of the mutex before
/// determining that thread must block.
///
/// Note that this module places one additional restriction over the system
/// condition variables: each condvar can be used with only one mutex at a
/// time. Any attempt to use multiple mutexes on the same condition variable
/// simultaneously will result in a runtime panic. However it is possible to
/// switch to a different mutex if there are no threads currently waiting on
/// the condition variable.
///
/// # Differences from the standard library `Condvar`
///
/// - No spurious wakeups: A wait will only return a non-timeout result if it
/// was woken up by `notify_one` or `notify_all`.
/// - `Condvar::notify_all` will only wake up a single thread, the rest are
/// requeued to wait for the `Mutex` to be unlocked by the thread that was
/// woken up.
/// - Only requires 1 word of space, whereas the standard library boxes the
/// `Condvar` due to platform limitations.
/// - Can be statically constructed.
/// - Does not require any drop glue when dropped.
/// - Inline fast path for the uncontended case.
///
/// # Examples
///
/// ```
/// use parking_lot::{Mutex, Condvar};
/// use std::sync::Arc;
/// use std::thread;
///
/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
/// let pair2 = pair.clone();
///
/// // Inside of our lock, spawn a new thread, and then wait for it to start
/// thread::spawn(move|| {
/// let &(ref lock, ref cvar) = &*pair2;
/// let mut started = lock.lock();
/// *started = true;
/// cvar.notify_one();
/// });
///
/// // wait for the thread to start up
/// let &(ref lock, ref cvar) = &*pair;
/// let mut started = lock.lock();
/// if !*started {
/// cvar.wait(&mut started);
/// }
/// // Note that we used an if instead of a while loop above. This is only
/// // possible because parking_lot's Condvar will never spuriously wake up.
/// // This means that wait() will only return after notify_one or notify_all is
/// // called.
/// ```
pub struct Condvar {
state: AtomicPtr<RawMutex>,
}
impl Condvar {
/// Creates a new condition variable which is ready to be waited on and
/// notified.
#[inline]
pub const fn new() -> Condvar {
Condvar {
state: AtomicPtr::new(ptr::null_mut()),
}
}
/// Wakes up one blocked thread on this condvar.
///
/// Returns whether a thread was woken up.
///
/// If there is a blocked thread on this condition variable, then it will
/// be woken up from its call to `wait` or `wait_timeout`. Calls to
/// `notify_one` are not buffered in any way.
///
/// To wake up all threads, see `notify_all()`.
///
/// # Examples
///
/// ```
/// use parking_lot::Condvar;
///
/// let condvar = Condvar::new();
///
/// // do something with condvar, share it with other threads
///
/// if !condvar.notify_one() {
/// println!("Nobody was listening for this.");
/// }
/// ```
#[inline]
pub fn notify_one(&self) -> bool {
// Nothing to do if there are no waiting threads
let state = self.state.load(Ordering::Relaxed);
if state.is_null() {
return false;
}
self.notify_one_slow(state)
}
#[cold]
fn notify_one_slow(&self, mutex: *mut RawMutex) -> bool {
// Unpark one thread and requeue the rest onto the mutex
let from = self as *const _ as usize;
let to = mutex as usize;
let validate = || {
// Make sure that our atomic state still points to the same
// mutex. If not then it means that all threads on the current
// mutex were woken up and a new waiting thread switched to a
// different mutex. In that case we can get away with doing
// nothing.
if self.state.load(Ordering::Relaxed) != mutex {
return RequeueOp::Abort;
}
// Unpark one thread if the mutex is unlocked, otherwise just
// requeue everything to the mutex. This is safe to do here
// since unlocking the mutex when the parked bit is set requires
// locking the queue. There is the possibility of a race if the
// mutex gets locked after we check, but that doesn't matter in
// this case.
if unsafe { (*mutex).mark_parked_if_locked() } {
RequeueOp::RequeueOne
} else {
RequeueOp::UnparkOne
}
};
let callback = |_op, result: UnparkResult| {
// Clear our state if there are no more waiting threads
if !result.have_more_threads {
self.state.store(ptr::null_mut(), Ordering::Relaxed);
}
TOKEN_NORMAL
};
let res = unsafe { parking_lot_core::unpark_requeue(from, to, validate, callback) };
res.unparked_threads + res.requeued_threads != 0
}
/// Wakes up all blocked threads on this condvar.
///
/// Returns the number of threads woken up.
///
/// This method will ensure that any current waiters on the condition
/// variable are awoken. Calls to `notify_all()` are not buffered in any
/// way.
///
/// To wake up only one thread, see `notify_one()`.
#[inline]
pub fn notify_all(&self) -> usize {
// Nothing to do if there are no waiting threads
let state = self.state.load(Ordering::Relaxed);
if state.is_null() {
return 0;
}
self.notify_all_slow(state)
}
#[cold]
fn notify_all_slow(&self, mutex: *mut RawMutex) -> usize {
// Unpark one thread and requeue the rest onto the mutex
let from = self as *const _ as usize;
let to = mutex as usize;
let validate = || {
// Make sure that our atomic state still points to the same
// mutex. If not then it means that all threads on the current
// mutex were woken up and a new waiting thread switched to a
// different mutex. In that case we can get away with doing
// nothing.
if self.state.load(Ordering::Relaxed) != mutex {
return RequeueOp::Abort;
}
// Clear our state since we are going to unpark or requeue all
// threads.
self.state.store(ptr::null_mut(), Ordering::Relaxed);
// Unpark one thread if the mutex is unlocked, otherwise just
// requeue everything to the mutex. This is safe to do here
// since unlocking the mutex when the parked bit is set requires
// locking the queue. There is the possibility of a race if the
// mutex gets locked after we check, but that doesn't matter in
// this case.
if unsafe { (*mutex).mark_parked_if_locked() } {
RequeueOp::RequeueAll
} else {
RequeueOp::UnparkOneRequeueRest
}
};
let callback = |op, result: UnparkResult| {
// If we requeued threads to the mutex, mark it as having
// parked threads. The RequeueAll case is already handled above.
if op == RequeueOp::UnparkOneRequeueRest && result.requeued_threads != 0 {
unsafe { (*mutex).mark_parked() };
}
TOKEN_NORMAL
};
let res = unsafe { parking_lot_core::unpark_requeue(from, to, validate, callback) };
res.unparked_threads + res.requeued_threads
}
/// Blocks the current thread until this condition variable receives a
/// notification.
///
/// This function will atomically unlock the mutex specified (represented by
/// `mutex_guard`) and block the current thread. This means that any calls
/// to `notify_*()` which happen logically after the mutex is unlocked are
/// candidates to wake this thread up. When this function call returns, the
/// lock specified will have been re-acquired.
///
/// # Panics
///
/// This function will panic if another thread is waiting on the `Condvar`
/// with a different `Mutex` object.
#[inline]
pub fn wait<T: ?Sized>(&self, mutex_guard: &mut MutexGuard<'_, T>) {
self.wait_until_internal(unsafe { MutexGuard::mutex(mutex_guard).raw() }, None);
}
/// Waits on this condition variable for a notification, timing out after
/// the specified time instant.
///
/// The semantics of this function are equivalent to `wait()` except that
/// the thread will be blocked roughly until `timeout` is reached. This
/// method should not be used for precise timing due to anomalies such as
/// preemption or platform differences that may not cause the maximum
/// amount of time waited to be precisely `timeout`.
///
/// Note that the best effort is made to ensure that the time waited is
/// measured with a monotonic clock, and not affected by the changes made to
/// the system time.
///
/// The returned `WaitTimeoutResult` value indicates if the timeout is
/// known to have elapsed.
///
/// Like `wait`, the lock specified will be re-acquired when this function
/// returns, regardless of whether the timeout elapsed or not.
///
/// # Panics
///
/// This function will panic if another thread is waiting on the `Condvar`
/// with a different `Mutex` object.
#[inline]
pub fn wait_until<T: ?Sized>(
&self,
mutex_guard: &mut MutexGuard<'_, T>,
timeout: Instant,
) -> WaitTimeoutResult {
self.wait_until_internal(
unsafe { MutexGuard::mutex(mutex_guard).raw() },
Some(timeout),
)
}
// This is a non-generic function to reduce the monomorphization cost of
// using `wait_until`.
fn wait_until_internal(&self, mutex: &RawMutex, timeout: Option<Instant>) -> WaitTimeoutResult {
let result;
let mut bad_mutex = false;
let mut requeued = false;
{
let addr = self as *const _ as usize;
let lock_addr = mutex as *const _ as *mut _;
let validate = || {
// Ensure we don't use two different mutexes with the same
// Condvar at the same time. This is done while locked to
// avoid races with notify_one
let state = self.state.load(Ordering::Relaxed);
if state.is_null() {
self.state.store(lock_addr, Ordering::Relaxed);
} else if state != lock_addr {
bad_mutex = true;
return false;
}
true
};
let before_sleep = || {
// Unlock the mutex before sleeping...
unsafe { mutex.unlock() };
};
let timed_out = |k, was_last_thread| {
// If we were requeued to a mutex, then we did not time out.
// We'll just park ourselves on the mutex again when we try
// to lock it later.
requeued = k != addr;
// If we were the last thread on the queue then we need to
// clear our state. This is normally done by the
// notify_{one,all} functions when not timing out.
if !requeued && was_last_thread {
self.state.store(ptr::null_mut(), Ordering::Relaxed);
}
};
result = unsafe { parking_lot_core::park(
addr,
validate,
before_sleep,
timed_out,
DEFAULT_PARK_TOKEN,
timeout,
) };
}
// Panic if we tried to use multiple mutexes with a Condvar. Note
// that at this point the MutexGuard is still locked. It will be
// unlocked by the unwinding logic.
if bad_mutex {
panic!("attempted to use a condition variable with more than one mutex");
}
// ... and re-lock it once we are done sleeping
if result == ParkResult::Unparked(TOKEN_HANDOFF) {
unsafe { deadlock::acquire_resource(mutex as *const _ as usize) };
} else {
mutex.lock();
}
WaitTimeoutResult(!(result.is_unparked() || requeued))
}
/// Waits on this condition variable for a notification, timing out after a
/// specified duration.
///
/// The semantics of this function are equivalent to `wait()` except that
/// the thread will be blocked for roughly no longer than `timeout`. This
/// method should not be used for precise timing due to anomalies such as
/// preemption or platform differences that may not cause the maximum
/// amount of time waited to be precisely `timeout`.
///
/// Note that the best effort is made to ensure that the time waited is
/// measured with a monotonic clock, and not affected by the changes made to
/// the system time.
///
/// The returned `WaitTimeoutResult` value indicates if the timeout is
/// known to have elapsed.
///
/// Like `wait`, the lock specified will be re-acquired when this function
/// returns, regardless of whether the timeout elapsed or not.
#[inline]
pub fn wait_for<T: ?Sized>(
&self,
mutex_guard: &mut MutexGuard<'_, T>,
timeout: Duration,
) -> WaitTimeoutResult {
let deadline = util::to_deadline(timeout);
self.wait_until_internal(unsafe { MutexGuard::mutex(mutex_guard).raw() }, deadline)
}
#[inline]
fn wait_while_until_internal<T, F>(
&self,
mutex_guard: &mut MutexGuard<'_, T>,
mut condition: F,
timeout: Option<Instant>,
) -> WaitTimeoutResult
where
T: ?Sized,
F: FnMut(&mut T) -> bool,
{
let mut result = WaitTimeoutResult(false);
while !result.timed_out() && condition(mutex_guard.deref_mut()) {
result =
self.wait_until_internal(unsafe { MutexGuard::mutex(mutex_guard).raw() }, timeout);
}
result
}
/// Blocks the current thread until this condition variable receives a
/// notification. If the provided condition evaluates to `false`, then the
/// thread is no longer blocked and the operation is completed. If the
/// condition evaluates to `true`, then the thread is blocked again and
/// waits for another notification before repeating this process.
///
/// This function will atomically unlock the mutex specified (represented by
/// `mutex_guard`) and block the current thread. This means that any calls
/// to `notify_*()` which happen logically after the mutex is unlocked are
/// candidates to wake this thread up. When this function call returns, the
/// lock specified will have been re-acquired.
///
/// # Panics
///
/// This function will panic if another thread is waiting on the `Condvar`
/// with a different `Mutex` object.
#[inline]
pub fn wait_while<T, F>(&self, mutex_guard: &mut MutexGuard<'_, T>, condition: F)
where
T: ?Sized,
F: FnMut(&mut T) -> bool,
{
self.wait_while_until_internal(mutex_guard, condition, None);
}
/// Waits on this condition variable for a notification, timing out after
/// the specified time instant. If the provided condition evaluates to
/// `false`, then the thread is no longer blocked and the operation is
/// completed. If the condition evaluates to `true`, then the thread is
/// blocked again and waits for another notification before repeating
/// this process.
///
/// The semantics of this function are equivalent to `wait()` except that
/// the thread will be blocked roughly until `timeout` is reached. This
/// method should not be used for precise timing due to anomalies such as
/// preemption or platform differences that may not cause the maximum
/// amount of time waited to be precisely `timeout`.
///
/// Note that the best effort is made to ensure that the time waited is
/// measured with a monotonic clock, and not affected by the changes made to
/// the system time.
///
/// The returned `WaitTimeoutResult` value indicates if the timeout is
/// known to have elapsed.
///
/// Like `wait`, the lock specified will be re-acquired when this function
/// returns, regardless of whether the timeout elapsed or not.
///
/// # Panics
///
/// This function will panic if another thread is waiting on the `Condvar`
/// with a different `Mutex` object.
#[inline]
pub fn wait_while_until<T, F>(
&self,
mutex_guard: &mut MutexGuard<'_, T>,
condition: F,
timeout: Instant,
) -> WaitTimeoutResult
where
T: ?Sized,
F: FnMut(&mut T) -> bool,
{
self.wait_while_until_internal(mutex_guard, condition, Some(timeout))
}
/// Waits on this condition variable for a notification, timing out after a
/// specified duration. If the provided condition evaluates to `false`,
/// then the thread is no longer blocked and the operation is completed.
/// If the condition evaluates to `true`, then the thread is blocked again
/// and waits for another notification before repeating this process.
///
/// The semantics of this function are equivalent to `wait()` except that
/// the thread will be blocked for roughly no longer than `timeout`. This
/// method should not be used for precise timing due to anomalies such as
/// preemption or platform differences that may not cause the maximum
/// amount of time waited to be precisely `timeout`.
///
/// Note that the best effort is made to ensure that the time waited is
/// measured with a monotonic clock, and not affected by the changes made to
/// the system time.
///
/// The returned `WaitTimeoutResult` value indicates if the timeout is
/// known to have elapsed.
///
/// Like `wait`, the lock specified will be re-acquired when this function
/// returns, regardless of whether the timeout elapsed or not.
#[inline]
pub fn wait_while_for<T: ?Sized, F>(
&self,
mutex_guard: &mut MutexGuard<'_, T>,
condition: F,
timeout: Duration,
) -> WaitTimeoutResult
where
F: FnMut(&mut T) -> bool,
{
let deadline = util::to_deadline(timeout);
self.wait_while_until_internal(mutex_guard, condition, deadline)
}
}
impl Default for Condvar {
#[inline]
fn default() -> Condvar {
Condvar::new()
}
}
impl fmt::Debug for Condvar {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("Condvar { .. }")
}
}
#[cfg(test)]
mod tests {
use crate::{Condvar, Mutex, MutexGuard};
use std::sync::mpsc::channel;
use std::sync::Arc;
use std::thread;
use std::thread::sleep;
use std::thread::JoinHandle;
use std::time::Duration;
use std::time::Instant;
#[test]
fn smoke() {
let c = Condvar::new();
c.notify_one();
c.notify_all();
}
#[test]
fn notify_one() {
let m = Arc::new(Mutex::new(()));
let m2 = m.clone();
let c = Arc::new(Condvar::new());
let c2 = c.clone();
let mut g = m.lock();
let _t = thread::spawn(move || {
let _g = m2.lock();
c2.notify_one();
});
c.wait(&mut g);
}
#[test]
fn notify_all() {
const N: usize = 10;
let data = Arc::new((Mutex::new(0), Condvar::new()));
let (tx, rx) = channel();
for _ in 0..N {
let data = data.clone();
let tx = tx.clone();
thread::spawn(move || {
let &(ref lock, ref cond) = &*data;
let mut cnt = lock.lock();
*cnt += 1;
if *cnt == N {
tx.send(()).unwrap();
}
while *cnt != 0 {
cond.wait(&mut cnt);
}
tx.send(()).unwrap();
});
}
drop(tx);
let &(ref lock, ref cond) = &*data;
rx.recv().unwrap();
let mut cnt = lock.lock();
*cnt = 0;
cond.notify_all();
drop(cnt);
for _ in 0..N {
rx.recv().unwrap();
}
}
#[test]
fn notify_one_return_true() {
let m = Arc::new(Mutex::new(()));
let m2 = m.clone();
let c = Arc::new(Condvar::new());
let c2 = c.clone();
let mut g = m.lock();
let _t = thread::spawn(move || {
let _g = m2.lock();
assert!(c2.notify_one());
});
c.wait(&mut g);
}
#[test]
fn notify_one_return_false() {
let m = Arc::new(Mutex::new(()));
let c = Arc::new(Condvar::new());
let _t = thread::spawn(move || {
let _g = m.lock();
assert!(!c.notify_one());
});
}
#[test]
fn notify_all_return() {
const N: usize = 10;
let data = Arc::new((Mutex::new(0), Condvar::new()));
let (tx, rx) = channel();
for _ in 0..N {
let data = data.clone();
let tx = tx.clone();
thread::spawn(move || {
let &(ref lock, ref cond) = &*data;
let mut cnt = lock.lock();
*cnt += 1;
if *cnt == N {
tx.send(()).unwrap();
}
while *cnt != 0 {
cond.wait(&mut cnt);
}
tx.send(()).unwrap();
});
}
drop(tx);
let &(ref lock, ref cond) = &*data;
rx.recv().unwrap();
let mut cnt = lock.lock();
*cnt = 0;
assert_eq!(cond.notify_all(), N);
drop(cnt);
for _ in 0..N {
rx.recv().unwrap();
}
assert_eq!(cond.notify_all(), 0);
}
#[test]
fn wait_for() {
let m = Arc::new(Mutex::new(()));
let m2 = m.clone();
let c = Arc::new(Condvar::new());
let c2 = c.clone();
let mut g = m.lock();
let no_timeout = c.wait_for(&mut g, Duration::from_millis(1));
assert!(no_timeout.timed_out());
let _t = thread::spawn(move || {
let _g = m2.lock();
c2.notify_one();
});
let timeout_res = c.wait_for(&mut g, Duration::from_secs(u64::max_value()));
assert!(!timeout_res.timed_out());
drop(g);
}
#[test]
fn wait_until() {
let m = Arc::new(Mutex::new(()));
let m2 = m.clone();
let c = Arc::new(Condvar::new());
let c2 = c.clone();
let mut g = m.lock();
let no_timeout = c.wait_until(&mut g, Instant::now() + Duration::from_millis(1));
assert!(no_timeout.timed_out());
let _t = thread::spawn(move || {
let _g = m2.lock();
c2.notify_one();
});
let timeout_res = c.wait_until(
&mut g,
Instant::now() + Duration::from_millis(u32::max_value() as u64),
);
assert!(!timeout_res.timed_out());
drop(g);
}
fn spawn_wait_while_notifier(
mutex: Arc<Mutex<u32>>,
cv: Arc<Condvar>,
num_iters: u32,
timeout: Option<Instant>,
) -> JoinHandle<()> {
thread::spawn(move || {
for epoch in 1..=num_iters {
// spin to wait for main test thread to block
// before notifying it to wake back up and check
// its condition.
let mut sleep_backoff = Duration::from_millis(1);
let _mutex_guard = loop {
let mutex_guard = mutex.lock();
if let Some(timeout) = timeout {
if Instant::now() >= timeout {
return;
}
}
if *mutex_guard == epoch {
break mutex_guard;
}
drop(mutex_guard);
// give main test thread a good chance to
// acquire the lock before this thread does.
sleep(sleep_backoff);
sleep_backoff *= 2;
};
cv.notify_one();
}
})
}
#[test]
fn wait_while_until_internal_does_not_wait_if_initially_false() {
let mutex = Arc::new(Mutex::new(0));
let cv = Arc::new(Condvar::new());
let condition = |counter: &mut u32| {
*counter += 1;
false
};
let mut mutex_guard = mutex.lock();
let timeout_result = cv
.wait_while_until_internal(&mut mutex_guard, condition, None);
assert!(!timeout_result.timed_out());
assert!(*mutex_guard == 1);
}
#[test]
fn wait_while_until_internal_times_out_before_false() {
let mutex = Arc::new(Mutex::new(0));
let cv = Arc::new(Condvar::new());
let num_iters = 3;
let condition = |counter: &mut u32| {
*counter += 1;
true
};
let mut mutex_guard = mutex.lock();
let timeout = Some(Instant::now() + Duration::from_millis(500));
let handle = spawn_wait_while_notifier(mutex.clone(), cv.clone(), num_iters, timeout);
let timeout_result =
cv.wait_while_until_internal(&mut mutex_guard, condition, timeout);
assert!(timeout_result.timed_out());
assert!(*mutex_guard == num_iters + 1);
// prevent deadlock with notifier
drop(mutex_guard);
handle.join().unwrap();
}
#[test]
fn wait_while_until_internal() {
let mutex = Arc::new(Mutex::new(0));
let cv = Arc::new(Condvar::new());
let num_iters = 4;
let condition = |counter: &mut u32| {
*counter += 1;
*counter <= num_iters
};
let mut mutex_guard = mutex.lock();
let handle = spawn_wait_while_notifier(mutex.clone(), cv.clone(), num_iters, None);
let timeout_result =
cv.wait_while_until_internal(&mut mutex_guard, condition, None);
assert!(!timeout_result.timed_out());
assert!(*mutex_guard == num_iters + 1);
let timeout_result = cv.wait_while_until_internal(&mut mutex_guard, condition, None);
handle.join().unwrap();
assert!(!timeout_result.timed_out());
assert!(*mutex_guard == num_iters + 2);
}
#[test]
#[should_panic]
fn two_mutexes() {
let m = Arc::new(Mutex::new(()));
let m2 = m.clone();
let m3 = Arc::new(Mutex::new(()));
let c = Arc::new(Condvar::new());
let c2 = c.clone();
// Make sure we don't leave the child thread dangling
struct PanicGuard<'a>(&'a Condvar);
impl<'a> Drop for PanicGuard<'a> {
fn drop(&mut self) {
self.0.notify_one();
}
}
let (tx, rx) = channel();
let g = m.lock();
let _t = thread::spawn(move || {
let mut g = m2.lock();
tx.send(()).unwrap();
c2.wait(&mut g);
});
drop(g);
rx.recv().unwrap();
let _g = m.lock();
let _guard = PanicGuard(&*c);
c.wait(&mut m3.lock());
}
#[test]
fn two_mutexes_disjoint() {
let m = Arc::new(Mutex::new(()));
let m2 = m.clone();
let m3 = Arc::new(Mutex::new(()));
let c = Arc::new(Condvar::new());
let c2 = c.clone();
let mut g = m.lock();
let _t = thread::spawn(move || {
let _g = m2.lock();
c2.notify_one();
});
c.wait(&mut g);
drop(g);
let _ = c.wait_for(&mut m3.lock(), Duration::from_millis(1));
}
#[test]
fn test_debug_condvar() {
let c = Condvar::new();
assert_eq!(format!("{:?}", c), "Condvar { .. }");
}
#[test]
fn test_condvar_requeue() {
let m = Arc::new(Mutex::new(()));
let m2 = m.clone();
let c = Arc::new(Condvar::new());
let c2 = c.clone();
let t = thread::spawn(move || {
let mut g = m2.lock();
c2.wait(&mut g);
});
let mut g = m.lock();
while !c.notify_one() {
// Wait for the thread to get into wait()
MutexGuard::bump(&mut g);
// Yield, so the other thread gets a chance to do something.
// (At least Miri needs this, because it doesn't preempt threads.)
thread::yield_now();
}
// The thread should have been requeued to the mutex, which we wake up now.
drop(g);
t.join().unwrap();
}
#[test]
fn test_issue_129() {
let locks = Arc::new((Mutex::new(()), Condvar::new()));
let (tx, rx) = channel();
for _ in 0..4 {
let locks = locks.clone();
let tx = tx.clone();
thread::spawn(move || {
let mut guard = locks.0.lock();
locks.1.wait(&mut guard);
locks.1.wait_for(&mut guard, Duration::from_millis(1));
locks.1.notify_one();
tx.send(()).unwrap();
});
}
thread::sleep(Duration::from_millis(100));
locks.1.notify_one();
for _ in 0..4 {
assert_eq!(rx.recv_timeout(Duration::from_millis(500)), Ok(()));
}
}
}
/// This module contains an integration test that is heavily inspired from WebKit's own integration
/// tests for it's own Condvar.
#[cfg(test)]
mod webkit_queue_test {
use crate::{Condvar, Mutex, MutexGuard};
use std::{collections::VecDeque, sync::Arc, thread, time::Duration};
#[derive(Clone, Copy)]
enum Timeout {
Bounded(Duration),
Forever,
}
#[derive(Clone, Copy)]
enum NotifyStyle {
One,
All,
}
struct Queue {
items: VecDeque<usize>,
should_continue: bool,
}
impl Queue {
fn new() -> Self {
Self {
items: VecDeque::new(),
should_continue: true,
}
}
}
fn wait<T: ?Sized>(
condition: &Condvar,
lock: &mut MutexGuard<'_, T>,
predicate: impl Fn(&mut MutexGuard<'_, T>) -> bool,
timeout: &Timeout,
) {
while !predicate(lock) {
match timeout {
Timeout::Forever => condition.wait(lock),
Timeout::Bounded(bound) => {
condition.wait_for(lock, *bound);
}
}
}
}
fn notify(style: NotifyStyle, condition: &Condvar, should_notify: bool) {
match style {
NotifyStyle::One => {
condition.notify_one();
}
NotifyStyle::All => {
if should_notify {
condition.notify_all();
}
}
}
}
fn run_queue_test(
num_producers: usize,
num_consumers: usize,
max_queue_size: usize,
messages_per_producer: usize,
notify_style: NotifyStyle,
timeout: Timeout,
delay: Duration,
) {
let input_queue = Arc::new(Mutex::new(Queue::new()));
let empty_condition = Arc::new(Condvar::new());
let full_condition = Arc::new(Condvar::new());
let output_vec = Arc::new(Mutex::new(vec![]));
let consumers = (0..num_consumers)
.map(|_| {
consumer_thread(
input_queue.clone(),
empty_condition.clone(),
full_condition.clone(),
timeout,
notify_style,
output_vec.clone(),
max_queue_size,
)
})
.collect::<Vec<_>>();
let producers = (0..num_producers)
.map(|_| {
producer_thread(
messages_per_producer,
input_queue.clone(),
empty_condition.clone(),
full_condition.clone(),
timeout,
notify_style,
max_queue_size,
)
})
.collect::<Vec<_>>();
thread::sleep(delay);
for producer in producers.into_iter() {
producer.join().expect("Producer thread panicked");
}
{
let mut input_queue = input_queue.lock();
input_queue.should_continue = false;
}
empty_condition.notify_all();
for consumer in consumers.into_iter() {
consumer.join().expect("Consumer thread panicked");
}
let mut output_vec = output_vec.lock();
assert_eq!(output_vec.len(), num_producers * messages_per_producer);
output_vec.sort();
for msg_idx in 0..messages_per_producer {
for producer_idx in 0..num_producers {
assert_eq!(msg_idx, output_vec[msg_idx * num_producers + producer_idx]);
}
}
}
fn consumer_thread(
input_queue: Arc<Mutex<Queue>>,
empty_condition: Arc<Condvar>,
full_condition: Arc<Condvar>,
timeout: Timeout,
notify_style: NotifyStyle,
output_queue: Arc<Mutex<Vec<usize>>>,
max_queue_size: usize,
) -> thread::JoinHandle<()> {
thread::spawn(move || loop {
let (should_notify, result) = {
let mut queue = input_queue.lock();
wait(
&*empty_condition,
&mut queue,
|state| -> bool { !state.items.is_empty() || !state.should_continue },
&timeout,
);
if queue.items.is_empty() && !queue.should_continue {
return;
}
let should_notify = queue.items.len() == max_queue_size;
let result = queue.items.pop_front();
std::mem::drop(queue);
(should_notify, result)
};
notify(notify_style, &*full_condition, should_notify);
if let Some(result) = result {
output_queue.lock().push(result);
}
})
}
fn producer_thread(
num_messages: usize,
queue: Arc<Mutex<Queue>>,
empty_condition: Arc<Condvar>,
full_condition: Arc<Condvar>,
timeout: Timeout,
notify_style: NotifyStyle,
max_queue_size: usize,
) -> thread::JoinHandle<()> {
thread::spawn(move || {
for message in 0..num_messages {
let should_notify = {
let mut queue = queue.lock();
wait(
&*full_condition,
&mut queue,
|state| state.items.len() < max_queue_size,
&timeout,
);
let should_notify = queue.items.is_empty();
queue.items.push_back(message);
std::mem::drop(queue);
should_notify
};
notify(notify_style, &*empty_condition, should_notify);
}
})
}
macro_rules! run_queue_tests {
( $( $name:ident(
num_producers: $num_producers:expr,
num_consumers: $num_consumers:expr,
max_queue_size: $max_queue_size:expr,
messages_per_producer: $messages_per_producer:expr,
notification_style: $notification_style:expr,
timeout: $timeout:expr,
delay_seconds: $delay_seconds:expr);
)* ) => {
$(#[test]
fn $name() {
let delay = Duration::from_secs($delay_seconds);
run_queue_test(
$num_producers,
$num_consumers,
$max_queue_size,
$messages_per_producer,
$notification_style,
$timeout,
delay,
);
})*
};
}
run_queue_tests! {
sanity_check_queue(
num_producers: 1,
num_consumers: 1,
max_queue_size: 1,
messages_per_producer: 100_000,
notification_style: NotifyStyle::All,
timeout: Timeout::Bounded(Duration::from_secs(1)),
delay_seconds: 0
);
sanity_check_queue_timeout(
num_producers: 1,
num_consumers: 1,
max_queue_size: 1,
messages_per_producer: 100_000,
notification_style: NotifyStyle::All,
timeout: Timeout::Forever,
delay_seconds: 0
);
new_test_without_timeout_5(
num_producers: 1,
num_consumers: 5,
max_queue_size: 1,
messages_per_producer: 100_000,
notification_style: NotifyStyle::All,
timeout: Timeout::Forever,
delay_seconds: 0
);
one_producer_one_consumer_one_slot(
num_producers: 1,
num_consumers: 1,
max_queue_size: 1,
messages_per_producer: 100_000,
notification_style: NotifyStyle::All,
timeout: Timeout::Forever,
delay_seconds: 0
);
one_producer_one_consumer_one_slot_timeout(
num_producers: 1,
num_consumers: 1,
max_queue_size: 1,
messages_per_producer: 100_000,
notification_style: NotifyStyle::All,
timeout: Timeout::Forever,
delay_seconds: 1
);
one_producer_one_consumer_hundred_slots(
num_producers: 1,
num_consumers: 1,
max_queue_size: 100,
messages_per_producer: 1_000_000,
notification_style: NotifyStyle::All,
timeout: Timeout::Forever,
delay_seconds: 0
);
ten_producers_one_consumer_one_slot(
num_producers: 10,
num_consumers: 1,
max_queue_size: 1,
messages_per_producer: 10000,
notification_style: NotifyStyle::All,
timeout: Timeout::Forever,
delay_seconds: 0
);
ten_producers_one_consumer_hundred_slots_notify_all(
num_producers: 10,
num_consumers: 1,
max_queue_size: 100,
messages_per_producer: 10000,
notification_style: NotifyStyle::All,
timeout: Timeout::Forever,
delay_seconds: 0
);
ten_producers_one_consumer_hundred_slots_notify_one(
num_producers: 10,
num_consumers: 1,
max_queue_size: 100,
messages_per_producer: 10000,
notification_style: NotifyStyle::One,
timeout: Timeout::Forever,
delay_seconds: 0
);
one_producer_ten_consumers_one_slot(
num_producers: 1,
num_consumers: 10,
max_queue_size: 1,
messages_per_producer: 10000,
notification_style: NotifyStyle::All,
timeout: Timeout::Forever,
delay_seconds: 0
);
one_producer_ten_consumers_hundred_slots_notify_all(
num_producers: 1,
num_consumers: 10,
max_queue_size: 100,
messages_per_producer: 100_000,
notification_style: NotifyStyle::All,
timeout: Timeout::Forever,
delay_seconds: 0
);
one_producer_ten_consumers_hundred_slots_notify_one(
num_producers: 1,
num_consumers: 10,
max_queue_size: 100,
messages_per_producer: 100_000,
notification_style: NotifyStyle::One,
timeout: Timeout::Forever,
delay_seconds: 0
);
ten_producers_ten_consumers_one_slot(
num_producers: 10,
num_consumers: 10,
max_queue_size: 1,
messages_per_producer: 50000,
notification_style: NotifyStyle::All,
timeout: Timeout::Forever,
delay_seconds: 0
);
ten_producers_ten_consumers_hundred_slots_notify_all(
num_producers: 10,
num_consumers: 10,
max_queue_size: 100,
messages_per_producer: 50000,
notification_style: NotifyStyle::All,
timeout: Timeout::Forever,
delay_seconds: 0
);
ten_producers_ten_consumers_hundred_slots_notify_one(
num_producers: 10,
num_consumers: 10,
max_queue_size: 100,
messages_per_producer: 50000,
notification_style: NotifyStyle::One,
timeout: Timeout::Forever,
delay_seconds: 0
);
}
}