1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
use core::{
fmt,
marker::PhantomData,
sync::atomic::{AtomicUsize, Ordering},
};
use crate::{AtomicTagPtr, TagPtr};
/********** impl Send + Sync **********************************************************************/
unsafe impl<T, const N: usize> Send for AtomicTagPtr<T, N> {}
unsafe impl<T, const N: usize> Sync for AtomicTagPtr<T, N> {}
/********** impl inherent *************************************************************************/
impl<T, const N: usize> AtomicTagPtr<T, N> {
doc_comment! {
doc_tag_bits!(),
pub const TAG_BITS: usize = N;
}
doc_comment! {
doc_tag_mask!(),
pub const TAG_MASK: usize = crate::mark_mask(Self::TAG_BITS);
}
doc_comment! {
doc_ptr_mask!(),
pub const POINTER_MASK: usize = !Self::TAG_MASK;
}
doc_comment! {
doc_null!(),
///
/// # Examples
///
/// ```
/// use core::{ptr, sync::atomic::Ordering};
///
/// type AtomicTagPtr = tagptr::AtomicTagPtr<i32, 2>;
///
/// let ptr = AtomicTagPtr::null();
/// assert_eq!(
/// ptr.load(Ordering::Relaxed).decompose(),
/// (ptr::null_mut(), 0)
/// );
/// ```
pub const fn null() -> Self {
Self { inner: AtomicUsize::new(0), _marker: PhantomData }
}
}
doc_comment! {
doc_atomic_new!(),
#[inline]
pub fn new(marked_ptr: TagPtr<T, N>) -> Self {
Self { inner: AtomicUsize::new(marked_ptr.into_usize()), _marker: PhantomData }
}
}
doc_comment! {
doc_atomic_into_inner!(),
#[inline]
pub fn into_inner(self) -> TagPtr<T, N> {
TagPtr::from_usize(self.inner.into_inner())
}
}
/// Returns a mutable reference to the underlying marked pointer.
///
/// This is safe because the mutable reference guarantees no other
/// threads are concurrently accessing the atomic pointer.
#[inline]
pub fn get_mut(&mut self) -> &mut TagPtr<T, N> {
// SAFETY: the mutable self reference ensures the dereferencing is sound
unsafe { &mut *(self.inner.get_mut() as *mut usize as *mut _) }
}
/// Loads the value of the atomic marked pointer.
///
/// `load` takes an [`Ordering`] argument which describes the memory
/// ordering of this operation.
/// Possible values are [`SeqCst`][seq_cst], [`Acquire`][acq] and
/// [`Relaxed`][rlx].
///
/// # Panics
///
/// Panics if `order` is [`Release`][rel] or [`AcqRel`][acq_rel].
///
/// [rlx]: Ordering::Relaxed
/// [acq]: Ordering::Acquire
/// [rel]: Ordering::Release
/// [acq_rel]: Ordering::AcqRel
/// [seq_cst]: Ordering::SeqCst
#[inline]
pub fn load(&self, order: Ordering) -> TagPtr<T, N> {
TagPtr::from_usize(self.inner.load(order))
}
/// Stores a value into the atomic marked pointer.
///
/// `store` takes an [`Ordering`] argument which describes the memory
/// ordering of this operation.
/// Possible values are [`SeqCst`][seq_cst], [`Release`][rel] and
/// [`Relaxed`][rlx].
///
/// # Panics
///
/// Panics if `order` is [`Acquire`][acq] or [`AcqRel`][acq_rel].
///
/// [rlx]: Ordering::Relaxed
/// [acq]: Ordering::Acquire
/// [rel]: Ordering::Release
/// [acq_rel]: Ordering::AcqRel
/// [seq_cst]: Ordering::SeqCst
#[inline]
pub fn store(&self, ptr: TagPtr<T, N>, order: Ordering) {
self.inner.store(ptr.into_usize(), order)
}
/// Stores a value into the atomic marked pointer and returns the previous
/// value.
///
/// `swap` takes an [`Ordering`] argument which describes the memory
/// ordering of this operation.
/// All ordering modes are possible.
/// Note that using [`Acquire`][acq] makes the store part of this operation
/// [`Relaxed`][rlx], and using [`Release`][rel] makes the load part
/// [`Relaxed`][rlx].
///
/// [rlx]: Ordering::Relaxed
/// [acq]: Ordering::Acquire
/// [rel]: Ordering::Release
///
/// # Examples
///
/// ```
/// use core::sync::atomic::Ordering;
///
/// type AtomicTagPtr = tagptr::AtomicTagPtr<i32, 2>;
/// type TagPtr = tagptr::TagPtr<i32, 2>;
///
/// let ptr = AtomicTagPtr::null();
/// let prev = ptr.swap(TagPtr::new(&mut 1), Ordering::Relaxed);
///
/// assert!(prev.is_null());
/// ```
pub fn swap(&self, ptr: TagPtr<T, N>, order: Ordering) -> TagPtr<T, N> {
TagPtr::from_usize(self.inner.swap(ptr.into_usize(), order))
}
/// Stores a value into the pointer if the current value is the same as
/// `current`.
///
/// The return value is a result indicating whether the new value was
/// written and containing the previous value.
/// On success this value is guaranteed to be equal to `current`.
///
/// `compare_exchange` takes takes two [`Ordering`] arguments to describe
/// the memory ordering of this operation.
/// The first describes the required ordering if the operation succeeds
/// while the second describes the required ordering when the operation
/// fails.
/// Using [`Acquire`][acq] as success ordering makes store part of this
/// operation [`Relaxed`][rlx], and using [`Release`][rel] makes the
/// successful load [`Relaxed`][rlx].
/// The failure ordering can only be [`SeqCst`][seq_cst], [`Acquire`][acq]
/// or [`Relaxed`][rlx] and must be equivalent or weaker than the success
/// ordering.
///
/// [rlx]: Ordering::Relaxed
/// [acq]: Ordering::Acquire
/// [rel]: Ordering::Release
/// [seq_cst]: Ordering::SeqCst
#[inline]
pub fn compare_exchange(
&self,
current: TagPtr<T, N>,
new: TagPtr<T, N>,
(success, failure): (Ordering, Ordering),
) -> Result<TagPtr<T, N>, TagPtr<T, N>> {
self.inner
.compare_exchange(current.into_usize(), new.into_usize(), success, failure)
.map(|_| current)
.map_err(TagPtr::from_usize)
}
/// Stores a value into the pointer if the current value is the same as
/// `current`.
///
/// The return value is a result indicating whether the new value was
/// written and containing the previous value.
/// On success this value is guaranteed to be equal to `current`.
///
/// Unlike `compare_exchange`, this function is allowed to spuriously fail,
/// even when the comparison succeeds, which can result in more efficient
/// code on some platforms.
/// The return value is a result indicating whether the new value was
/// written and containing the previous value.
///
/// `compare_exchange` takes takes two [`Ordering`] arguments to describe
/// the memory ordering of this operation.
/// The first describes the required ordering if the operation succeeds
/// while the second describes the required ordering when the operation
/// fails.
/// Using [`Acquire`][acq] as success ordering makes store part of this
/// operation [`Relaxed`][rlx], and using [`Release`][rel] makes the
/// successful load [`Relaxed`][rlx].
/// The failure ordering can only be [`SeqCst`][seq_cst], [`Acquire`][acq]
/// or [`Relaxed`][rlx] and must be equivalent or weaker than the success
/// ordering.
///
/// [rlx]: Ordering::Relaxed
/// [acq]: Ordering::Acquire
/// [rel]: Ordering::Release
/// [seq_cst]: Ordering::SeqCst
#[inline]
pub fn compare_exchange_weak(
&self,
current: TagPtr<T, N>,
new: TagPtr<T, N>,
(success, failure): (Ordering, Ordering),
) -> Result<TagPtr<T, N>, TagPtr<T, N>> {
self.inner
.compare_exchange_weak(current.into_usize(), new.into_usize(), success, failure)
.map(|_| current)
.map_err(TagPtr::from_usize)
}
/// Adds `value` to the current tag value, returning the previous marked
/// pointer.
///
/// This operation directly and unconditionally alters the internal numeric
/// representation of the atomic marked pointer.
/// Hence there is no way to reliably guarantee the operation only affects
/// the tag bits and does not overflow into the pointer bits.
///
/// `fetch_add` takes takes an [`Ordering`] argument which describes the
/// memory ordering of this operation.
/// All ordering modes are possible.
/// Note that using [`Acquire`][acq] makes the store part of this operation
/// [`Relaxed`][rlx] and using [`Release`][rel] makes the load part
/// [`Relaxed`][rlx].
///
/// [rlx]: Ordering::Relaxed
/// [acq]: Ordering::Acquire
/// [rel]: Ordering::Release
///
/// # Examples
///
/// ```
/// use core::sync::atomic::Ordering;
///
/// type AtomicTagPtr = tagptr::AtomicTagPtr<i32, 2>;
/// type TagPtr = tagptr::TagPtr<i32, 2>;
///
/// let reference = &mut 1;
/// let ptr = AtomicTagPtr::new(TagPtr::new(reference));
///
/// assert_eq!(
/// ptr.fetch_add(1, Ordering::Relaxed).decompose(),
/// (reference as *mut _, 0)
/// );
///
/// assert_eq!(
/// ptr.load(Ordering::Relaxed).decompose(),
/// (reference as *mut _, 0b01)
/// );
/// ```
#[inline]
pub fn fetch_add(&self, value: usize, order: Ordering) -> TagPtr<T, N> {
debug_assert!(value < Self::TAG_MASK, "`value` exceeds tag bits (would overflow)");
TagPtr::from_usize(self.inner.fetch_add(value, order))
}
/// Subtracts `value` from the current tag value, returning the previous
/// marked pointer.
///
/// This operation directly and unconditionally alters the internal numeric
/// representation of the atomic marked pointer.
/// Hence there is no way to reliably guarantee the operation only affects
/// the tag bits and does not overflow into the pointer bits.
///
/// `fetch_sub` takes takes an [`Ordering`] argument which describes the
/// memory ordering of this operation.
/// All ordering modes are possible.
/// Note that using [`Acquire`][acq] makes the store part of this operation
/// [`Relaxed`][rlx] and using [`Release`][rel] makes the load part
/// [`Relaxed`][rlx].
///
/// [rlx]: Ordering::Relaxed
/// [acq]: Ordering::Acquire
/// [rel]: Ordering::Release
///
/// # Examples
///
/// ```
/// use core::sync::atomic::Ordering;
///
/// type AtomicTagPtr = tagptr::AtomicTagPtr<i32, 2>;
/// type TagPtr = tagptr::TagPtr<i32, 2>;
///
/// let reference = &mut 1;
/// let ptr = AtomicTagPtr::new(TagPtr::compose(reference, 0b10));
///
/// assert_eq!(
/// ptr.fetch_sub(1, Ordering::Relaxed).decompose(),
/// (reference as *mut _, 0b10)
/// );
///
/// assert_eq!(
/// ptr.load(Ordering::Relaxed).decompose(),
/// (reference as *mut _, 0b01)
/// );
/// ```
#[inline]
pub fn fetch_sub(&self, value: usize, order: Ordering) -> TagPtr<T, N> {
debug_assert!(value < Self::TAG_MASK, "`value` exceeds tag bits (would underflow)");
TagPtr::from_usize(self.inner.fetch_sub(value, order))
}
/// Performs a bitwise "or" of `value` with the current tag value, returning
/// the previous marked pointer.
///
/// This operation directly and unconditionally alters the internal numeric
/// representation of the atomic marked pointer.
/// Hence there is no way to reliably guarantee the operation only affects
/// the tag bits and does not overflow into the pointer bits.
///
/// `fetch_or` takes takes an [`Ordering`] argument which describes the
/// memory ordering of this operation.
/// All ordering modes are possible.
/// Note that using [`Acquire`][acq] makes the store part of this operation
/// [`Relaxed`][rlx] and using [`Release`][rel] makes the load part
/// [`Relaxed`][rlx].
///
/// [rlx]: Ordering::Relaxed
/// [acq]: Ordering::Acquire
/// [rel]: Ordering::Release
///
/// # Examples
///
/// ```
/// use core::sync::atomic::Ordering;
///
/// type AtomicTagPtr = tagptr::AtomicTagPtr<i32, 2>;
/// type TagPtr = tagptr::TagPtr<i32, 2>;
///
/// let reference = &mut 1;
/// let ptr = AtomicTagPtr::new(TagPtr::compose(reference, 0b10));
///
/// assert_eq!(
/// ptr.fetch_or(0b11, Ordering::Relaxed).decompose(),
/// (reference as *mut _, 0b10)
/// );
///
/// assert_eq!(
/// ptr.load(Ordering::Relaxed).decompose(),
/// (reference as *mut _, 0b11)
/// );
/// ```
#[inline]
pub fn fetch_or(&self, value: usize, order: Ordering) -> TagPtr<T, N> {
debug_assert!(value <= Self::TAG_MASK, "`value` exceeds tag bits (would corrupt pointer)");
TagPtr::from_usize(self.inner.fetch_or(Self::TAG_MASK & value, order))
}
/// Performs a bitwise "and" of `value` with the current tag value,
/// returning the previous marked pointer.
///
/// This operation directly and unconditionally alters the internal numeric
/// representation of the atomic marked pointer.
/// Hence there is no way to reliably guarantee the operation only affects
/// the tag bits and does not overflow into the pointer bits.
///
/// `fetch_and` takes takes an [`Ordering`] argument which describes the
/// memory ordering of this operation.
/// All ordering modes are possible.
/// Note that using [`Acquire`][acq] makes the store part of this operation
/// [`Relaxed`][rlx] and using [`Release`][rel] makes the load part
/// [`Relaxed`][rlx].
///
/// [rlx]: Ordering::Relaxed
/// [acq]: Ordering::Acquire
/// [rel]: Ordering::Release
///
/// # Examples
///
/// ```
/// use core::sync::atomic::Ordering;
///
/// type AtomicTagPtr = tagptr::AtomicTagPtr<i32, 2>;
/// type TagPtr = tagptr::TagPtr<i32, 2>;
///
/// let reference = &mut 1;
/// let ptr = AtomicTagPtr::new(TagPtr::compose(reference, 0b10));
///
/// // fetch_x returns previous value
/// assert_eq!(
/// ptr.fetch_and(0b11, Ordering::Relaxed).decompose(),
/// (reference as *mut _, 0b10)
/// );
///
/// assert_eq!(
/// ptr.load(Ordering::Relaxed).decompose(),
/// (reference as *mut _, 0b10)
/// );
/// ```
#[inline]
pub fn fetch_and(&self, value: usize, order: Ordering) -> TagPtr<T, N> {
debug_assert!(value <= Self::TAG_MASK, "`value` exceeds tag bits (would corrupt pointer)");
TagPtr::from_usize(self.inner.fetch_and(Self::POINTER_MASK | value, order))
}
}
/********** impl Debug ****************************************************************************/
impl<T, const N: usize> fmt::Debug for AtomicTagPtr<T, N> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let (ptr, tag) = self.load(Ordering::SeqCst).decompose();
f.debug_struct("AtomicTagPtr").field("ptr", &ptr).field("tag", &tag).finish()
}
}
/********** impl Default **************************************************************************/
impl<T, const N: usize> Default for AtomicTagPtr<T, N> {
impl_default!();
}
/********** impl From (*mut T) ********************************************************************/
impl<T, const N: usize> From<*mut T> for AtomicTagPtr<T, N> {
#[inline]
fn from(ptr: *mut T) -> Self {
Self::new(ptr.into())
}
}
/********** impl From (TagPtr<T, N>) ***********************************************************/
impl<T, const N: usize> From<TagPtr<T, N>> for AtomicTagPtr<T, N> {
#[inline]
fn from(ptr: TagPtr<T, N>) -> Self {
Self::new(ptr)
}
}
/********** impl Pointer **************************************************************************/
impl<T, const N: usize> fmt::Pointer for AtomicTagPtr<T, N> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Pointer::fmt(&self.load(Ordering::SeqCst), f)
}
}