1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
// Implementation derived from `weak` in Rust's
// library/std/src/sys/unix/weak.rs at revision
// fd0cb0cdc21dd9c06025277d772108f8d42cb25f.
//
// Ideally we should update to a newer version which doesn't need `dlsym`,
// however that depends on the `extern_weak` feature which is currently
// unstable.

#![cfg_attr(linux_raw, allow(unsafe_code))]

//! Support for "weak linkage" to symbols on Unix
//!
//! Some I/O operations we do in libstd require newer versions of OSes but we
//! need to maintain binary compatibility with older releases for now. In order
//! to use the new functionality when available we use this module for
//! detection.
//!
//! One option to use here is weak linkage, but that is unfortunately only
//! really workable on Linux. Hence, use dlsym to get the symbol value at
//! runtime. This is also done for compatibility with older versions of glibc,
//! and to avoid creating dependencies on `GLIBC_PRIVATE` symbols. It assumes
//! that we've been dynamically linked to the library the symbol comes from,
//! but that is currently always the case for things like libpthread/libc.
//!
//! A long time ago this used weak linkage for the `__pthread_get_minstack`
//! symbol, but that caused Debian to detect an unnecessarily strict versioned
//! dependency on libc6 (#23628).

// There are a variety of `#[cfg]`s controlling which targets are involved in
// each instance of `weak!` and `syscall!`. Rather than trying to unify all of
// that, we'll just allow that some unix targets don't use this module at all.
#![allow(dead_code, unused_macros)]
#![allow(clippy::doc_markdown)]

use crate::ffi::CStr;
use core::ffi::c_void;
use core::ptr::null_mut;
use core::sync::atomic::{self, AtomicPtr, Ordering};
use core::{marker, mem};

const NULL: *mut c_void = null_mut();
const INVALID: *mut c_void = 1 as *mut c_void;

macro_rules! weak {
    ($vis:vis fn $name:ident($($t:ty),*) -> $ret:ty) => (
        #[allow(non_upper_case_globals)]
        $vis static $name: $crate::weak::Weak<unsafe extern fn($($t),*) -> $ret> =
            $crate::weak::Weak::new(concat!(stringify!($name), '\0'));
    )
}

pub(crate) struct Weak<F> {
    name: &'static str,
    addr: AtomicPtr<c_void>,
    _marker: marker::PhantomData<F>,
}

impl<F> Weak<F> {
    pub(crate) const fn new(name: &'static str) -> Self {
        Self {
            name,
            addr: AtomicPtr::new(INVALID),
            _marker: marker::PhantomData,
        }
    }

    pub(crate) fn get(&self) -> Option<F> {
        assert_eq!(mem::size_of::<F>(), mem::size_of::<usize>());
        unsafe {
            // Relaxed is fine here because we fence before reading through the
            // pointer (see the comment below).
            match self.addr.load(Ordering::Relaxed) {
                INVALID => self.initialize(),
                NULL => None,
                addr => {
                    let func = mem::transmute_copy::<*mut c_void, F>(&addr);
                    // The caller is presumably going to read through this value
                    // (by calling the function we've dlsymed). This means we'd
                    // need to have loaded it with at least C11's consume
                    // ordering in order to be guaranteed that the data we read
                    // from the pointer isn't from before the pointer was
                    // stored. Rust has no equivalent to memory_order_consume,
                    // so we use an acquire fence (sorry, ARM).
                    //
                    // Now, in practice this likely isn't needed even on CPUs
                    // where relaxed and consume mean different things. The
                    // symbols we're loading are probably present (or not) at
                    // init, and even if they aren't the runtime dynamic loader
                    // is extremely likely have sufficient barriers internally
                    // (possibly implicitly, for example the ones provided by
                    // invoking `mprotect`).
                    //
                    // That said, none of that's *guaranteed*, and so we fence.
                    atomic::fence(Ordering::Acquire);
                    Some(func)
                }
            }
        }
    }

    // Cold because it should only happen during first-time initialization.
    #[cold]
    unsafe fn initialize(&self) -> Option<F> {
        let val = fetch(self.name);
        // This synchronizes with the acquire fence in `get`.
        self.addr.store(val, Ordering::Release);

        match val {
            NULL => None,
            addr => Some(mem::transmute_copy::<*mut c_void, F>(&addr)),
        }
    }
}

// To avoid having the `linux_raw` backend depend on the libc crate, just
// declare the few things we need in a module called `libc` so that `fetch`
// uses it.
#[cfg(linux_raw)]
mod libc {
    use core::ptr;
    use linux_raw_sys::ctypes::{c_char, c_void};

    #[cfg(all(target_os = "android", target_pointer_width = "32"))]
    pub(super) const RTLD_DEFAULT: *mut c_void = -1isize as *mut c_void;
    #[cfg(not(all(target_os = "android", target_pointer_width = "32")))]
    pub(super) const RTLD_DEFAULT: *mut c_void = ptr::null_mut();

    extern "C" {
        pub(super) fn dlsym(handle: *mut c_void, symbol: *const c_char) -> *mut c_void;
    }

    #[test]
    fn test_abi() {
        assert_eq!(self::RTLD_DEFAULT, ::libc::RTLD_DEFAULT);
    }
}

unsafe fn fetch(name: &str) -> *mut c_void {
    let name = match CStr::from_bytes_with_nul(name.as_bytes()) {
        Ok(c_str) => c_str,
        Err(..) => return null_mut(),
    };
    libc::dlsym(libc::RTLD_DEFAULT, name.as_ptr().cast())
}

#[cfg(not(linux_kernel))]
macro_rules! syscall {
    (fn $name:ident($($arg_name:ident: $t:ty),*) via $_sys_name:ident -> $ret:ty) => (
        unsafe fn $name($($arg_name: $t),*) -> $ret {
            weak! { fn $name($($t),*) -> $ret }

            if let Some(fun) = $name.get() {
                fun($($arg_name),*)
            } else {
                libc_errno::set_errno(libc_errno::Errno(libc::ENOSYS));
                -1
            }
        }
    )
}

#[cfg(linux_kernel)]
macro_rules! syscall {
    (fn $name:ident($($arg_name:ident: $t:ty),*) via $sys_name:ident -> $ret:ty) => (
        unsafe fn $name($($arg_name:$t),*) -> $ret {
            // This looks like a hack, but `concat_idents` only accepts idents
            // (not paths).
            use libc::*;

            trait AsSyscallArg {
                type SyscallArgType;
                fn into_syscall_arg(self) -> Self::SyscallArgType;
            }

            // Pass pointer types as pointers, to preserve provenance.
            impl<T> AsSyscallArg for *mut T {
                type SyscallArgType = *mut T;
                fn into_syscall_arg(self) -> Self::SyscallArgType { self }
            }
            impl<T> AsSyscallArg for *const T {
                type SyscallArgType = *const T;
                fn into_syscall_arg(self) -> Self::SyscallArgType { self }
            }

            // Pass `BorrowedFd` values as the integer value.
            impl AsSyscallArg for $crate::fd::BorrowedFd<'_> {
                type SyscallArgType = ::libc::c_int;
                fn into_syscall_arg(self) -> Self::SyscallArgType {
                    $crate::fd::AsRawFd::as_raw_fd(&self) as _
                }
            }

            // Coerce integer values into `c_long`.
            impl AsSyscallArg for i8 {
                type SyscallArgType = ::libc::c_int;
                fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() }
            }
            impl AsSyscallArg for u8 {
                type SyscallArgType = ::libc::c_int;
                fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() }
            }
            impl AsSyscallArg for i16 {
                type SyscallArgType = ::libc::c_int;
                fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() }
            }
            impl AsSyscallArg for u16 {
                type SyscallArgType = ::libc::c_int;
                fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() }
            }
            impl AsSyscallArg for i32 {
                type SyscallArgType = ::libc::c_int;
                fn into_syscall_arg(self) -> Self::SyscallArgType { self }
            }
            impl AsSyscallArg for u32 {
                type SyscallArgType = ::libc::c_uint;
                fn into_syscall_arg(self) -> Self::SyscallArgType { self }
            }
            impl AsSyscallArg for usize {
                type SyscallArgType = ::libc::c_ulong;
                fn into_syscall_arg(self) -> Self::SyscallArgType { self as _ }
            }

            // On 64-bit platforms, also coerce `i64` and `u64` since `c_long`
            // is 64-bit and can hold those values.
            #[cfg(target_pointer_width = "64")]
            impl AsSyscallArg for i64 {
                type SyscallArgType = ::libc::c_long;
                fn into_syscall_arg(self) -> Self::SyscallArgType { self }
            }
            #[cfg(target_pointer_width = "64")]
            impl AsSyscallArg for u64 {
                type SyscallArgType = ::libc::c_ulong;
                fn into_syscall_arg(self) -> Self::SyscallArgType { self }
            }

            // `concat_idents` is [unstable], so we take an extra `sys_name`
            // parameter and have our users do the concat for us for now.
            //
            // [unstable]: https://github.com/rust-lang/rust/issues/29599
            /*
            syscall(
                concat_idents!(SYS_, $name),
                $($arg_name.into_syscall_arg()),*
            ) as $ret
            */

            syscall($sys_name, $($arg_name.into_syscall_arg()),*) as $ret
        }
    )
}

macro_rules! weakcall {
    ($vis:vis fn $name:ident($($arg_name:ident: $t:ty),*) -> $ret:ty) => (
        $vis unsafe fn $name($($arg_name: $t),*) -> $ret {
            weak! { fn $name($($t),*) -> $ret }

            // Use a weak symbol from libc when possible, allowing `LD_PRELOAD`
            // interposition, but if it's not found just fail.
            if let Some(fun) = $name.get() {
                fun($($arg_name),*)
            } else {
                libc_errno::set_errno(libc_errno::Errno(libc::ENOSYS));
                -1
            }
        }
    )
}

/// A combination of `weakcall` and `syscall`. Use the libc function if it's
/// available, and fall back to `libc::syscall` otherwise.
macro_rules! weak_or_syscall {
    ($vis:vis fn $name:ident($($arg_name:ident: $t:ty),*) via $sys_name:ident -> $ret:ty) => (
        $vis unsafe fn $name($($arg_name: $t),*) -> $ret {
            weak! { fn $name($($t),*) -> $ret }

            // Use a weak symbol from libc when possible, allowing `LD_PRELOAD`
            // interposition, but if it's not found just fail.
            if let Some(fun) = $name.get() {
                fun($($arg_name),*)
            } else {
                syscall! { fn $name($($arg_name: $t),*) via $sys_name -> $ret }
                $name($($arg_name),*)
            }
        }
    )
}