quanta/stats.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/// Estimates the arithmetic mean (and the error) for a set of samples.
///
/// This type is written and maintained internally as it is trivial to implement and doesn't warrant
/// a separate dependency. As well, we add some features like exposing the sample count,
/// calculating the mean + error value, etc, that existing crates don't do.
///
/// Based on [Welford's algorithm][welfords] which computes the mean incrementally, with constant
/// time and space complexity.
///
/// [welfords]: https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford%27s_online_algorithm
#[derive(Default)]
pub(crate) struct Variance {
mean: f64,
mean2: f64,
n: u64,
}
impl Variance {
#[inline]
pub fn add(&mut self, sample: f64) {
self.n += 1;
let n_f = self.n as f64;
let delta_sq = (sample - self.mean).powi(2);
self.mean2 += ((n_f - 1.0) * delta_sq) / n_f;
self.mean += (sample - self.mean) / n_f;
}
#[inline]
pub fn mean(&self) -> f64 {
self.mean
}
#[inline]
pub fn mean_error(&self) -> f64 {
if self.n < 2 {
return 0.0;
}
let n_f = self.n as f64;
let sd = (self.mean2 / (n_f - 1.0)).sqrt();
sd / n_f.sqrt()
}
#[inline]
pub fn mean_with_error(&self) -> f64 {
let mean = self.mean.abs();
mean + self.mean_error().abs()
}
#[inline]
pub fn has_significant_result(&self) -> bool {
self.n >= 2
}
#[inline]
pub fn samples(&self) -> u64 {
self.n
}
}
#[cfg(test)]
mod tests {
use super::Variance;
#[test]
fn basic() {
let inputs = &[5.0, 10.0, 12.0, 15.0, 20.0];
let mut variance = Variance::default();
for input in inputs {
variance.add(*input);
}
assert_eq!(variance.mean(), 12.4);
let expected_mean_error = 2.5019;
assert!((variance.mean_error() - expected_mean_error).abs() < 0.001);
}
}