triomphe/
unique_arc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
use alloc::vec::Vec;
use alloc::{alloc::Layout, boxed::Box};
use core::convert::TryFrom;
use core::iter::FromIterator;
use core::marker::PhantomData;
use core::mem::{ManuallyDrop, MaybeUninit};
use core::ops::{Deref, DerefMut};
use core::ptr::{self, NonNull};
use core::sync::atomic::AtomicUsize;

use crate::iterator_as_exact_size_iterator::IteratorAsExactSizeIterator;
use crate::HeaderSlice;

use super::{Arc, ArcInner};

/// An `Arc` that is known to be uniquely owned
///
/// When `Arc`s are constructed, they are known to be
/// uniquely owned. In such a case it is safe to mutate
/// the contents of the `Arc`. Normally, one would just handle
/// this by mutating the data on the stack before allocating the
/// `Arc`, however it's possible the data is large or unsized
/// and you need to heap-allocate it earlier in such a way
/// that it can be freely converted into a regular `Arc` once you're
/// done.
///
/// `UniqueArc` exists for this purpose, when constructed it performs
/// the same allocations necessary for an `Arc`, however it allows mutable access.
/// Once the mutation is finished, you can call `.shareable()` and get a regular `Arc`
/// out of it.
///
/// ```rust
/// # use triomphe::UniqueArc;
/// let data = [1, 2, 3, 4, 5];
/// let mut x = UniqueArc::new(data);
/// x[4] = 7; // mutate!
/// let y = x.shareable(); // y is an Arc<T>
/// ```
#[repr(transparent)]
pub struct UniqueArc<T: ?Sized>(Arc<T>);

impl<T> UniqueArc<T> {
    #[inline]
    /// Construct a new UniqueArc
    pub fn new(data: T) -> Self {
        UniqueArc(Arc::new(data))
    }

    /// Construct an uninitialized arc
    #[inline]
    pub fn new_uninit() -> UniqueArc<MaybeUninit<T>> {
        unsafe {
            let layout = Layout::new::<ArcInner<MaybeUninit<T>>>();
            let ptr = alloc::alloc::alloc(layout);
            let mut p = NonNull::new(ptr)
                .unwrap_or_else(|| alloc::alloc::handle_alloc_error(layout))
                .cast::<ArcInner<MaybeUninit<T>>>();
            ptr::write(&mut p.as_mut().count, AtomicUsize::new(1));

            UniqueArc(Arc {
                p,
                phantom: PhantomData,
            })
        }
    }

    /// Gets the inner value of the unique arc
    pub fn into_inner(this: Self) -> T {
        // Wrap the Arc in a `ManuallyDrop` so that its drop routine never runs
        let this = ManuallyDrop::new(this.0);
        debug_assert!(
            this.is_unique(),
            "attempted to call `.into_inner()` on a `UniqueArc` with a non-zero ref count",
        );

        // Safety: We have exclusive access to the inner data and the
        //         arc will not perform its drop routine since we've
        //         wrapped it in a `ManuallyDrop`
        unsafe { Box::from_raw(this.ptr()).data }
    }
}

impl<T: ?Sized> UniqueArc<T> {
    /// Convert to a shareable `Arc<T>` once we're done mutating it
    #[inline]
    pub fn shareable(self) -> Arc<T> {
        self.0
    }

    /// Creates a new [`UniqueArc`] from the given [`Arc`].
    ///
    /// An unchecked alternative to `Arc::try_unique()`
    ///
    /// # Safety
    ///
    /// The given `Arc` must have a reference count of exactly one
    ///
    pub(crate) unsafe fn from_arc(arc: Arc<T>) -> Self {
        debug_assert_eq!(Arc::count(&arc), 1);
        Self(arc)
    }

    /// Creates a new `&mut `[`UniqueArc`] from the given `&mut `[`Arc`].
    ///
    /// An unchecked alternative to `Arc::try_as_unique()`
    ///
    /// # Safety
    ///
    /// The given `Arc` must have a reference count of exactly one
    pub(crate) unsafe fn from_arc_ref(arc: &mut Arc<T>) -> &mut Self {
        debug_assert_eq!(Arc::count(arc), 1);

        // Safety: caller guarantees that `arc` is unique,
        //         `UniqueArc` is `repr(transparent)`
        &mut *(arc as *mut Arc<T> as *mut UniqueArc<T>)
    }
}

impl<T> UniqueArc<MaybeUninit<T>> {
    /// Calls `MaybeUninit::write` on the contained value.
    pub fn write(&mut self, val: T) -> &mut T {
        unsafe {
            // Casting *mut MaybeUninit<T> -> *mut T is always fine
            let ptr = self.as_mut_ptr() as *mut T;

            // Safety: We have exclusive access to the inner data
            ptr.write(val);

            // Safety: the pointer was just written to
            &mut *ptr
        }
    }

    /// Obtain a mutable pointer to the stored `MaybeUninit<T>`.
    pub fn as_mut_ptr(&mut self) -> *mut MaybeUninit<T> {
        unsafe { &mut (*self.0.ptr()).data }
    }

    /// Convert to an initialized Arc.
    ///
    /// # Safety
    ///
    /// This function is equivalent to `MaybeUninit::assume_init` and has the
    /// same safety requirements. You are responsible for ensuring that the `T`
    /// has actually been initialized before calling this method.
    #[inline]
    pub unsafe fn assume_init(this: Self) -> UniqueArc<T> {
        UniqueArc(Arc {
            p: ManuallyDrop::new(this).0.p.cast(),
            phantom: PhantomData,
        })
    }
}

impl<T> UniqueArc<[MaybeUninit<T>]> {
    /// Create an Arc contains an array `[MaybeUninit<T>]` of `len`.
    pub fn new_uninit_slice(len: usize) -> Self {
        let ptr: NonNull<ArcInner<HeaderSlice<(), [MaybeUninit<T>]>>> =
            Arc::allocate_for_header_and_slice(len);

        // Safety:
        // - `ArcInner` is properly allocated and initialized.
        //   - `()` and `[MaybeUninit<T>]` do not require special initialization
        // - The `Arc` is just created and so -- unique.
        unsafe {
            let arc: Arc<HeaderSlice<(), [MaybeUninit<T>]>> = Arc::from_raw_inner(ptr.as_ptr());
            let arc: Arc<[MaybeUninit<T>]> = arc.into();
            UniqueArc(arc)
        }
    }

    /// # Safety
    ///
    /// Must initialize all fields before calling this function.
    #[inline]
    pub unsafe fn assume_init_slice(Self(this): Self) -> UniqueArc<[T]> {
        UniqueArc(this.assume_init())
    }
}

impl<T: ?Sized> TryFrom<Arc<T>> for UniqueArc<T> {
    type Error = Arc<T>;

    fn try_from(arc: Arc<T>) -> Result<Self, Self::Error> {
        Arc::try_unique(arc)
    }
}

impl<T: ?Sized> Deref for UniqueArc<T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        &self.0
    }
}

impl<T: ?Sized> DerefMut for UniqueArc<T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        // We know this to be uniquely owned
        unsafe { &mut (*self.0.ptr()).data }
    }
}

impl<A> FromIterator<A> for UniqueArc<[A]> {
    fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self {
        let iter = iter.into_iter();
        let (lower, upper) = iter.size_hint();
        let arc: Arc<[A]> = if Some(lower) == upper {
            let iter = IteratorAsExactSizeIterator::new(iter);
            Arc::from_header_and_iter((), iter).into()
        } else {
            let vec = iter.collect::<Vec<_>>();
            Arc::from(vec)
        };
        // Safety: We just created an `Arc`, so it's unique.
        unsafe { UniqueArc::from_arc(arc) }
    }
}

// Safety:
// This leverages the correctness of Arc's CoerciblePtr impl. Additionally, we must ensure that
// this can not be used to violate the safety invariants of UniqueArc, which require that we can not
// duplicate the Arc, such that replace_ptr returns a valid instance. This holds since it consumes
// a unique owner of the contained ArcInner.
#[cfg(feature = "unsize")]
unsafe impl<T, U: ?Sized> unsize::CoerciblePtr<U> for UniqueArc<T> {
    type Pointee = T;
    type Output = UniqueArc<U>;

    fn as_sized_ptr(&mut self) -> *mut T {
        // Dispatch to the contained field.
        unsize::CoerciblePtr::<U>::as_sized_ptr(&mut self.0)
    }

    unsafe fn replace_ptr(self, new: *mut U) -> UniqueArc<U> {
        // Dispatch to the contained field, work around conflict of destructuring and Drop.
        let inner = ManuallyDrop::new(self);
        UniqueArc(ptr::read(&inner.0).replace_ptr(new))
    }
}

#[cfg(test)]
mod tests {
    use crate::{Arc, UniqueArc};
    use core::{convert::TryFrom, mem::MaybeUninit};

    #[test]
    fn unique_into_inner() {
        let unique = UniqueArc::new(10u64);
        assert_eq!(UniqueArc::into_inner(unique), 10);
    }

    #[test]
    fn try_from_arc() {
        let x = Arc::new(10_000);
        let y = x.clone();

        assert!(UniqueArc::try_from(x).is_err());
        assert_eq!(
            UniqueArc::into_inner(UniqueArc::try_from(y).unwrap()),
            10_000,
        );
    }

    #[test]
    #[allow(deprecated)]
    fn maybeuninit_smoke() {
        let mut arc: UniqueArc<MaybeUninit<_>> = UniqueArc::new_uninit();
        arc.write(999);

        let arc = unsafe { UniqueArc::assume_init(arc) };
        assert_eq!(*arc, 999);
    }
}